NREL Study Identifies Opportunities & Challenges Of Achieving The U.S. Transformational Goal Of 100% Clean Electricity By 2035

At-a-Glance: 

A new report by the National Renewable Energy Laboratory (NREL) examines the types of clean energy technologies and the scale and pace of deployment needed to achieve 100% clean electricity, or a net-zero power grid, in the United States by 2035.

Key Takeaways:

  • Overall, NREL finds multiple pathways to 100% clean electricity by 2035 that would produce significant benefits, but the exact technology mix and costs will be determined by research and development (R&D), manufacturing, and infrastructure investment decisions over the next decade.
  • To achieve 100% clean electricity by 2035, new clean energy technologies will have to be deployed at an unprecedented scale. Modeling shows that wind and solar would need to supply 60% to 80% of generation. Getting there would require an additional 40–90 gigawatts of solar on the grid per year and 70–150 gigawatts of wind per year by the end of this decade – more than four times the current annual deployment levels for each technology.
  • Seasonal storage, like clean hydrogen-fueled combustion turbines, is important when clean electricity makes up about 80%–95% of generation. Achieving the needed amount of storage requires substantial development of infrastructure, including fuel storage, transportation and pipeline networks, and additional generation capacity needed to produce clean fuels.
  • Overall, NREL finds in all modeled scenarios that the health and climate benefits associated with fewer emissions exceed the power system costs to get to 100% clean electricity.

Path to 100% Perspective

Achieving ambitious decarbonization goals will require a reduction of reliance on fossil fuels and an increase in renewable energy. What will be critical to the transformation is a reliable source of energy when sources like wind or solar are not producing enough. The most economical long-duration storage is formed with green hydrogen-based sustainable fuels, such as hydrogen, ammonia, carbon neutral methanol and methane. These fuels can be used to generate electricity in flexible power plants. Such flexible power plants provide carbon neutral firm, dispatchable capacity to the grid at any time.

Sustainable fuels can be produced using a process called Power-to-Gas (PtG), which uses surplus solar and wind energy to produce renewable fuels, like synthetic methane and hydrogen. Hydrogen as a fuel is carbon-free and synthetic methane produced using carbon recycled from the air, is a carbon-neutral fuel.