Switching to renewable energy is sometimes dirty. Tech like blockchain can help

At-a-Glance:

The worldwide push to achieve net-zero carbon emissions by 2050 will require advances in green technologies – particularly tech associated with renewable energy – but simply waiting for future tools to emerge isn’t a viable solution to climate change. To learn more, read Switching to renewable energy is sometimes dirty. Tech like blockchain can help.”   Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • According to McKinsey, electricity will occupy 30% of the global demand for power by 2050 – up from 19% today. The International Energy Agency expects renewables to generate 80% of global electricity demand within the next decade, as the cost of renewable generation plummets below the cost of fossil fuels.
  • “Clearly, there’s a great danger that we simply replace a hydrocarbon-based economy…with a metal economy,” says Robert Lee, professor of law at the University of Birmingham in the U.K., referring to the metals that are required to make batteries, such as lithium. Mining those metals is a polluting process itself, and properly disposing of batteries at the end of their shelf life is a looming issue.
  • Digital technologies can help address the challenges involved in switching to renewable energy and electricity. For example, the European Union passed legislation requiring battery manufacturers to stamp battery units with a digital “passport” tag so the battery can be traced through its lifetime.
  • Energy saved by efficiencies introduced through digitalizing will offset the energy consumed by digitalization. This would come through actions like energy suppliers using remote sensors and AI oversight to monitor power demand and distribute electricity efficiently.

Path to 100% Perspective:

The average estimated life of a Lithium-Ion battery is about two to three years or 300 to 500 charge cycles, whichever happens first. Lower costs and increased spending on renewables are driving deeper penetration of renewable energy around the globe. Renewables will certainly play an integral role in powering mining operations because of the benefits they offer in terms of cost and sustainability. Economically it makes sense. The levelled cost of electricity (LCOE) is lower than ever, and renewables are becoming increasingly cost-effective as organizations seek efficiencies and breakthroughs.

 

 

Photo by Launchpresso on Unsplash

California to Test Whether Big Batteries Can Stop Summer Blackouts

At-a-Glance:

With summer’s heat approaching, California’s plan for avoiding a repeat of last year’s blackouts hinges on a humble savior – the battery. Giant versions of the same technology that powers smart phones and cars are being plugged into the state’s electrical grid at breakneck speed, with California set to add more battery capacity this year than all of China. To learn more, read “California to Test Whether Big Batteries Can Stop Summer Blackouts.” Reading this article may require a subscription from the news outlet. 

Key Takeaways:

  • By August, California will have 1,700 megawatts of new battery capacity – enough to power 1.3 million homes and, in theory, avert a grid emergency like that of 2020.
  • The state’s plan to eliminate greenhouse gas emissions by 2045 may require installing 48.8 gigawatts of energy storage, according to a report by three state agencies – more than five times the output of all the grid-scale batteries currently operating worldwide.
  • But batteries do have two major limitations – time and cost. Most of the battery packs now available are designed to run for just four hours at a stretch. While that makes them a good fit for California, where electricity supplies can be strained in early summer evenings after solar power shuts  down, batteries would not have prevented the multi-day outage that paralyzed Texas in February. A battery can only operate for so long before it needs to recharge.

Path to 100% Perspective:

California’s current plan without thermal generation would require an investment of $309 billion between 2021 and 2045 to add another 1,624 GWh of battery storage and electricity generation cost would jump to a sky-high 128 $ / MWh. However,  with Power-to-Gas and thermal generation as long-term energy would save the state $176 billion between 2021 and 2045 and electricity generation cost would be $50 / MWh in 2045. More batteries without thermal generation is not affordable and is not enough to create a resilient or reliable grid.

Photo by American Public Power Association on Unsplash

Los Angeles now has a road map for 100% renewable energy

At-a-Glance:

Los Angeles is one of the last places in California still burning coal for electricity — and if all goes according to plan, it could become one of the country’s first major cities to nearly eliminate fossil fuels from its power supply. In a first-of-its-kind study commissioned by the city and released, the National Renewable Energy Laboratory concluded L.A. is capable of achieving 98% clean energy within the next decade and 100% by 2035, meeting one of President Biden’s most ambitious climate goals. And it can do so without causing blackouts or disrupting the economy, the federal research lab found, undercutting two of the most common arguments used by opponents of climate action. To learn more, read “Los Angeles now has a road map for 100% renewable energy.”  Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • The NREL study team included nearly 100 people and was aided by the “Eagle” supercomputer at the research lab’s Golden, Colo., headquarters.
  • They conducted an energy systems analysis they believe to be unprecedented in scope and detail, running more than 100 million simulations since 2017 and integrating heaps of modeling data on electricity use, job creation, weather conditions, power lines and the potential for rooftop solar panels on houses across Los Angeles, among other topics.
  • Under a different scenario, L.A. would still get about 10% of its electricity from gas come 2045, down from 24% today.
  • Every pathway outlined by NREL includes geothermal power plants, which tap the Earth’s subterranean heat and can generate climate-friendly energy around the clock, as well as pumped hydropower, which can store solar and wind longer than a typical battery. Several pathways in the study also assume the city keeps its 5.7% ownership stake in Arizona’s Palo Verde nuclear plant.

Path to 100% Perspective:

California already has the natural gas infrastructure in place to follow the Optimal Path. The state’s existing gas storage capacity and distribution systems can easily provide the necessary 8 TWh of reliable, fully dispatchable renewable energy while using only 15 percent of existing underground gas storage capacity. This alleviates concerns around “stranded assets” since flexible generation plants can shift at any time to burn synthetic methane, even before 2045. California’s current plan without thermal generation would require an investment of $309 billion between 2021 and 2045 to add another 1,624 GWh of battery storage and electricity generation cost would jump to a sky-high 128 $ / MWh. However, the Optimal Path would save the state $176 billion with Power-to-Gas and thermal generation as long term energy storage between 2021 and 2045 and electricity generation cost would be $50 / MWh in 2045. More batteries without thermal generation is not affordable and is not enough to create a resilient or reliable grid.

 

Photo by Denys Nevozhai on Unsplash

California Energy Officials Trying to Avoid Summer Blackouts

At-a-Glance:

State agencies and electric utilities are scrambling to shore up power supplies in hopes of avoiding the rolling blackouts that left 800,000 California homes and businesses without power during a record-breaking heat wave last August. To learn more, read California Energy Officials Trying to Avoid Summer Blackouts.”

Key Takeaways:

  • Gas-fired power plants could be called on more, instead of less. State regulators extended the life of outdated gas-fired power generators in Huntington Beach, Long Beach, Redondo Beach, and Oxnard, all scheduled to shutdown at the end of 2020.
  • The state’s “Final Root Cause Analysis” found the rolling blackouts on Aug. 14 and 15 resulted from a combination of increased demand, inadequate supplies, a now-fixed software glitch, the export of power to out-of-state utilities, gas-fired plants unable to run at full capacity and out-of-state suppliers with no energy left to sell to California.
  • Considering long-term needs, the state Public Utilities Commission has called for 8,000 megawatts of new clean energy over the next four years – including 2,000 megawatts by this summer.

Path to 100% Perspective:

The current plan in California is to use more gas fire plants, but by adding flexible generation to the mix, California could follow the Optimal Path and reduce the need for battery storage to 158 GWh. This would help the state avoid overbuilding its renewable generation and battery storage infrastructure and cut solar and wind capacity requirements by 8 GW compared to renewables plus battery storage alone. California already has the natural gas infrastructure in place to follow the Optimal Path. The state’s existing gas storage capacity and distribution systems can easily provide the necessary 8 TWh of reliable, fully dispatchable renewable energy while using only 15 percent of existing underground gas storage capacity. This alleviates concerns around “stranded assets” since flexible generation plants can shift at any time to burn synthetic methane, even before 2045.

 

Photo by Andrey Metelev on Unsplash

Duke Energy Faces Challenges to Its Push for New Natural Gas Plants

At-a-Glance:

Duke Energy’s plan to build gigawatts’ worth of new natural gas generators to supply its grid over the next 15 years has already drawn fire from clean-energy advocates who say it violates the utility’s long-range decarbonization goals and could leave customers paying for power plants that can’t economically compete with cleaner alternatives. To learn more, read Duke Energy Faces Challenges to Its Push for New Natural Gas Plants.”

Key Takeaways:

  • In Duke’s integrated resource plan (IRP) for its Carolina utilities, only one of six pathways for reaching net-zero carbon by 2050 avoids building new natural gas plants. The rest propose between 6.1 – 9.6 gigawatts of new natural gas capacity.
  • The IRP also notes that Duke is planning a massive build-out of clean-energy capacity, including between 8.7 – 16.4 GW of new solar and 1 – 7.5 GW of new energy storage, depending on each scenario’s targeted levels of carbon emissions reduction.
  • A key issue highlighted by Duke’s critics is that its IRP appears to have inflated its peak electricity demands and underestimated the amount of resources available to meet its winter loads.
  • A second key issue is that Duke’s IRP appears to undervalue solar power, batteries, demand-side management, and energy efficiency as cost-effective alternatives to building new power plants.
  • An independent analysis by Synapse Energy Economics found that taking a solar-battery path could reduce overall system cost by $7.2 billion, out of a range of 15-year costs; reduce carbon dioxide emissions by tens of millions of tons per year; and provide enough capacity to carry Duke through its electric-heating-driven winter peaks without threatening grid reliability.

Path to 100% Perspective:

Duke is facing the challenge of the pressure to decarbonize quickly, all while maintaining reliability for their customers. Fast-start, flexible thermal plants can help utilities meet rigorous carbon reduction targets, maintain grid reliability and minimize costs. They are designed to burn natural gas today and convert to renewable fuels produced using power-to-methane (or hydrogen) in the future. Power-to-methane (PtM) is one of a growing number of power-to-gas processes. PtM sequesters carbon from the air through direct-air carbon capture. This process is coupled with electrolysis for hydrogen, and a methanation process to combine carbon and hydrogen into synthetic methane. The electricity used to power this process comes from excess renewable (e.g., wind and solar) or carbon-free (e.g., hydro or nuclear) sources. Thus, the fuel produced from PtM is renewable.

 

Photo by American Public Power Association on Unsplash

Hydrogen advocates look to capitalize on California’s goal to replace diesel for back-up generation

At-a-Glance:

California regulators are on the lookout for cleaner alternatives to replace the widespread use of back-up diesel generation – particularly among data centers in Silicon Valley and other areas of the state – and some industry players think hydrogen could be the answer. To learn more, read “Hydrogen advocates look to capitalize on California’s goal to replace diesel for back-up generation.”

Key Takeaways:

  • Hydrogen fuel cells are advantageous for several reasons: they occupy less space than batteries, possess long-term storage capability, are quiet, reliable, and 100% zero-emission.
  • The key draw of hydrogen is its cost effectiveness at longer durations.
    • For a completely resilient, 100% renewable data center with zero emissions, using hydrogen would translate to a levelized cost of electricity amounting to $119 per MWh.
    • Batteries would lead to over $4,000 per MWh levelized cost to ensure 48 hours of backup power.
  • Taking a step back from the issue of replacing diesel back-up generators, environmental advocates are urging the state to prioritize the adoption of renewable, zero emissions technologies.
  • Ben Schwartz, policy manager at Clean Coalition, said California could adopt policies to promote the efficiency of solar and storage alternatives to diesel generation.

Path to 100% Perspective:

Renewable fuels, such as hydrogen, can help utilities overcome the variability challenges posed by seasonal conditions and extreme weather. One approach that can be leveraged in the transition to a 100% renewable energy system is power-to-gas (PtG). PtG technology uses excess energy from wind and solar to produce synthetic hydrogen and methane. The combination of stored fuel potential and thermal capacity yields a long-term energy storage system that acts like a gigantic distributed “battery.” Coupled with traditional, shorter-term storage technologies, this system can help meet seasonal energy demands when renewables are variable, and provide a reliable and secure supply of electricity during periods of extreme weather.

 

Photo by Clayton Cardinalli on Unsplash

The 10 Ways Renewable Energy’s Boom Year Will Shape 2021

At-a-Glance:

With the uncertainty of 2020 behind us, the new year kicked off with surging growth for renewable energy. Growth will likely continue into 2021, fueled in part by last year’s major turning points. Some analysts have started predicting that the U.S. power sector is approaching peak natural gas. That would leave room for solar-panel installations to build on the ongoing boom. To learn more, read The 10 Ways Renewable Energy’s Boom Year Will Shape 2021.” Reading this article may require a subscription. 

Key Takeaways:

  • Although U.S. residential solar installations dropped nearly 20% in the second quarter of 2020 from the first, by the end of the year, the sector bounced back and the country added 19 gigawatts of total solar power.
  • New battery capacity in the U.S. more than doubled in the third quarter of 2020 from the second, according to Wood Mackenzie and the U.S. Energy Storage Association. Projects in California were a key reason for the surge.
  • Electricity from Spain’s solar farms was up over 60% in 2020 compared to 2019, generating over 15,000 gigawatt hours of power, according to data from the country’s grid manager Red Electrica.
  • Renewable power beat out fossil fuels in the European Union for the first time, with approximately 40% of electricity in the first half of 2020 coming from renewable sources compared with 34% from plants burning fossil fuels.

Path to 100% Perspective:

Despite the upheaval caused by COVID-19 in 2020, the demand for renewable energy has not slowed and the path to 100% is becoming clearer as countries around the world commit to carbon-free sources of electricity. Developments such as China’s commitment to reaching carbon neutrality by 2060 and the European Union’s shift to renewables as the dominant power source provide further evidence that the tide is turning toward decarbonization. Ambitious goals, a commitment to research and development, and ongoing collaboration will continue to pave the path to a renewable energy future.

 

Photo by Jason Ng on Unsplash

California’s Big 2021 Decision on Grid Reliability: Expand Supply or Manage Demand?

At-a-Glance:

California is facing a major decision under a tight deadline — whether it should push for large-scale power plants and batteries to prevent a repeat of its August 2020 rolling blackouts this coming summer or turn to behind-the-meter resources such as batteries and demand response. To learn more, read California’s Big 2021 Decision on Grid Reliability: Expand Supply or Manage Demand?” 

Key Takeaways:

  • The California Public Utilities Commission (CPUC) issued a ruling in late December asking the state’s three big investor-owned utilities to find ways to expand supply-side capacity before August 2021.
  • Demand-side solutions – behind-the-meter batteries, smart thermostats, and commercial and industrial demand response – may be a more realistic set of options to meet CPUC’s August 2021 deadline.
  • The joint California agency root-cause analysis into last summer’s grid emergency highlighted “demand response and flexibility” as the resources most likely to be able to be added by mid-2021.
  • Existing rules may be dampening the potential for capturing California’s nation-leading roster of behind-the-meter resources, which adds up to gigawatts’ worth of latent capacity.
  • Barriers aren’t stopping companies from enlisting new demand-response and behind-the-meter-battery customers in California. Oakland-based startup, OhmConnect raised $100 million in December 2020 from Google-affiliated Sidewalk Infrastructure Partners to build out 550 MW of residential load flexibility via smart thermostats and Wi-Fi-connected smart plugs.

Path to 100% Perspective:

Opening up greater demand-response flexibility in California will not only help prevent grid emergencies like those experienced during the rolling blackouts last summer; it will also help advance California’s efforts on the Path to 100% clean electricity. California should pursue an approach that includes adding new innovative demand response systems and more thermal generation flexibility.

 

Photo by Kai Gradert on Unsplash