The Future Of Carbon Capture Is In The Air

At-a-Glance 

While renewable energy is now widely accepted as the cheapest form of electricity generation, energy demand growth, government growth requirements and the need for a responsible transition mean fossil fuels will still have a role. But for that to work with climate goals, carbon capture and storage (CCS) technology must be mainstreamed. In Iceland, Climeworks is showing how direct air capture/storage (DAC) could change the game. To learn more, read “The Future Of Carbon Capture Is In The Air.” Reading this article could require a subscription.

Key Takeaways

  • Climeworks new plant, named Orca, will combine Swiss-based Climeworks’ direct air capture technology with the underground storage of carbon dioxide provided by Iceland’s Carbfix and the plant should be online in spring 2021. 
  • What makes Climeworks use of DAC so interesting is that it doesn’t just work in removing emissions associated specifically with power generation, but can capture emissions directly from the air. This is the company’s largest plant so far, intended to capture around 4,000 tons of CO2 per year.
  • There has been significant movement in the CCS market recently. In the UK, as part of its recently announced green infrastructure plans, the government has promised £1 billion to set up four industrial clusters for CCS. 
  • The Norwegian government is working with Equinor, Shell and Total on a project intended to standardize and scale carbon capture, transportation and storage in Europe. The Northern Lights Project is expected to capture CO2 from industry in the Oslo-fjord region, following which the carbon will be liquefied and shipped to an onshore terminal on the Norwegian west coast and then taken out to the North Sea for long term subsea storage.
  • In Canada, Carbon Engineering says its technology can be scaled up to remove up to 1 million tons of CO2 from the air annually, with a large-scale plant in development with Occidental Petroleum with a completion date reported to be 2026. 

Path to 100% Perspective

Capturing carbon dioxide from the air, utilizing synthesis to combine these into hydrocarbons suitable for synthetic renewable fuels offers substantial opportunities to take valuable steps towards carbon neutral communities. These renewable fuels could be used in transportation, energy storage and energy distribution which improves power system sustainability, reliability and flexibility.

 

Photo by Thomas Kolbeck on Unsplash

Renewables alone won’t satisfy California’s clean energy ambitions

At-a-Glance:

Carbon capture and storage (CCS) would provide California with 15 percent of the emissions reductions necessary to meet its goal of a carbon-neutral economy in 2045, and it would save the state $750 million in costs for solar generation and grid-scale batteries, according to a new study. The report was released in October by the non-profit Energy Futures Initiative (EFI) and Stanford University. According to the report, 20 million tons of carbon dioxide emitted by 76 large industrial and power-generating emitters in California, could be extracted and stored underground at a profit. To learn more, read “Renewables alone won’t satisfy California’s clean energy ambitions.”

Key Takeaways:

  • Clean firm power available whenever needed and most likely to come from natural gas, is necessary to smooth out the peaks and valleys that are inherent to wind, solar, and hydroelectric generation, according to EFI.
  • Transportation accounts for 40 percent of California’s greenhouse gas emissions. The need for clean firm power will surge in concert with the growth of electric vehicles as the state moves to phase out gasoline-fueled cars by 2035.
  • Industry in California is a larger source of emissions than the power sector today, and it has few options available to reduce CO2 apart from CCS. Cement production, for example, requires high temperatures, but only 40 percent of its emissions are from combustion; a larger fraction is process related.
  • A federal tax credit known as 45Q offers $22 per ton of CO2 that is captured and used for enhanced oil recovery or other end uses, increasing to $35 in 2026 and adjusted for inflation thereafter. The credit is $34 per ton, increasing to $50, for CO2 that is captured and injected to geologic storage.
  • The research found that ethanol plants, hydrogen producers, and refineries in the state could capture and store CO2 profitably with existing incentives.

Path to 100% Perspective:

The record breaking heat wave that swept across the western part of the country and caused a series of blackouts in the Golden State this summer, offered additional modelling opportunities to demonstrate the most effective mix of energy to accommodate any extreme weather situation and meet clean power mandates. The big challenge facing California and the rest of the world is how to integrate renewables into the grid while building security of supply and a sustainable power system with an affordable plan for everyone involved. The “Optimal Path“ includes using power-to-gas (PtG) along with existing and future renewable energy.

 

Photo by Tyler Casey on Unsplash