Missing Pieces of Decarbonization Puzzle Realized

Jussi Heikkinen, Director of Growth & Development, Americas
Wärtsilä Energy Business

These are exciting times as the renewable energy future is a focus for so many organizations and governments around the world, as indicated by attendance of the Wärtsilä sponsored webcast hosted by GreenBiz on November 19, 2020, Missing Pieces of Decarbonization Puzzle Realized. Emerging technologies are moving closer to reality, which makes ambitious energy goals more realistic and the path to 100 percent renewable energy is now within reach.

A place where the transition to renewables has progressed quite far already is California. The lessons learned along the way have been plentiful, but powerful nonetheless. The record-breaking heat wave that swept across the western part of the country and caused a series of blackouts in the Golden State, offered additional modelling opportunities to demonstrate the most effective mix of energy to accommodate any extreme weather situation during the transition, and to meet clean power mandates.

The big challenge facing California and the rest of the world is how to integrate renewables into the grid while building security of supply and a sustainable power system with an affordable plan for everyone involved.

That’s why Wärtsilä launched its Path to 100% initiative. We believe a 100% renewable energy future is possible, practical and financially viable so we assembled a community of experts to produce solutions based on science and engineering. This fall, we published a white paper that describes the Optimal Path to decarbonization for California using new hourly load data provided by this summer’s extreme heatwave.

In the whitepaper, Path to 100% Renewables for California, we modelled an approach for  California to reach its climate and clean power goals faster, at a lower cost to ratepayers, all while maintaining system reliability.

The “Optimal Path“ includes renewable carbon neutral fuels – hydrogen and synthetic methane. Curtailed renewable electricity is used in the process with water to produce hydrogen, and carbon is captured from air to produce synthetic methane with hydrogen. These fuels are used in power plants to provide a long term energy storage for seasonal and weather management needs. In the Optimal Path scenario, Renewable Portfolio Standard (RPS) commitments would actually be reached by 2040, five years ahead of schedule.

Generation costs in the “Optimal Path” scenarios are between 50 and 54 dollars per megawatt hour in 2045, while these costs would be almost 3 times higher if California opted to use only solar, wind and storage to build the power system. This cost difference is excessive and not beneficial for industries or households to pay. Additionally, carbon emissions are at net zero in 2045 in both scenarios.

How can California get on the Optimal Path to a renewable energy future? One recommendation is to recognize carbon neutral fuels – as presented above – to be counted as renewable for RPS purposes. This would enable the utilities to start looking for ways to invest and use such fuels to the benefit of California.

Another state aggressively pursuing renewable energy goals is Texas. Co-presenter and Electric Reliability Council of Texas (ERCOT) Principal of Market Design and Development, Kenneth Ragsdale shared the Lone Star State’s progress on integrating renewables into the power system.

Climate Imperative’s Executive Director, Bruce Nilles offered a big picture perspective on electricity generation capacity and the commitments needed to accelerate decarbonization.

To watch the recorded presentations from Wärtsilä, ERCOT as well as Climate Imperative and download presentation materials, register today for the Missing Pieces of Decarbonization Puzzle Realized webcast.

Top Solar States Per Capita 2012 vs. 2020 — CleanTechnica Report


CleanTechnica has developed a new report on the top solar power states per capita, by comparing the results from the first half of 2020 with the results from 2012. Also note that this report does not include all 50 states, unlike the previous one, because the data back in 2012 didn’t include all 50 states. It just included the top 25 states in terms of overall solar power capacity. For the full 2020 ranking, see this report. To learn more, read Top Solar States Per Capita 2012 vs. 2020 — CleanTechnica Report.”

Key Takeaways:

  • Two things to note in the two charts. First, how much solar power capacity per capita has increased in each of these states. Secondly, how the rankings have shifted around.
    • Nevada rose from #3 in 2012 to #1 in 2020
    • California rose from #6 in 2012 to #3 in 2020
    • North Carolina rose from #11 in 2012 to #5 in 2020
  • The US Solar Energy Industries Association (SEIA) has some interesting “quick facts” on each state in the country. Below are a few comparative highlights:
    • California-first in the nation
      • Total Solar Investment in State: $68,148.93 million.
      • Solar Companies in State: 2,006
    • North Carolina-second in the nation
      • Total Solar Investment in State: $8,999.31 million.
      • Solar Companies in State: 216
    • Arizona-fifth in the nation
      • Total Solar Investment in State: $12,772.41 million.
      • Solar Companies in State: 307
  • North Carolina jumped up the charts from #7 to #2. New Jersey had almost the opposite result, dropping from #3 to #7.

Path to 100% Perspective:

These future power systems will need four cornerstones to maintain reliable power in the clean power system of the future. The “Generation Cornerstone” is foundational to a 100% renewable future when wind and solar farms will generate most electricity. The “Constant Balance Cornerstone” keeps power flows on the grid balanced, minute by minute by collecting excess power in short-term battery-style energy storage with typical durations of one hour or less that continuously charge and discharge as needed to supply constant, reliable power. The “Daily Shift Cornerstone” ensures the lights stay on by shifting overbuilt renewable power during the day to meet load and charge storage, and discharging that stored energy at other times of the day when it’s needed. The “Reliability Cornerstone” ensures system reliability by using flexible generation to make up the difference.


Photo by Chelsea on Unsplash