A “Supercharge” Of Renewable Energy Development Is Taking Place Around Us

At-a-Glance: 

Incentives in The Inflation Reduction Act (IRA) will lower the cost of renewable energy in the U.S. dramatically over the next decade, according to analysis from the ICF Climate Center, a global consulting firm. They’ve deduced that the new US climate law will make clean energy projects easier to finance across the country, quickening the pace of the US energy transition.  For more read: A “Supercharge” Of Renewable Energy Development Is Taking Place Around Us.

Key Takeaways:

  • All of the technologies the authors of this report analyzed —  whether mature wind and solar or emerging battery, hydrogen, and carbon capture and sequestration (CCS) — would see double digit percentage declines. 
  • The IRA’s broad definition of energy storage for the ITC should help emerging alternatives to lithium ion batteries come to market, increasing the diversity of energy storage options, 
  • Hydrogen could see the biggest cost decline — a huge reduction anywhere from 52% to 67% — of any technology. Green hydrogen facilities that take advantage of the climate law’s tax credits could become cost-competitive with new natural-gas-powered facilities by 2030.
  • The authors assume within their projections that policymakers will address some sticky obstacles confronting clean energy projects, including “not in my backyard” (NIMBY) reactions and interconnection problems.

Path to 100% Perspective

A 100% renewable energy future in the United States is possible by 2050 if everyone works together, and the IRA definitely sets the stage for an influx of development. While increasing renewable energy sources, like wind and solar, the U.S. must also determine a plan to realistically phase out fossil fuel plants. Renewable sources can be intermittent, so battery technology will need to improve. Investing in technology like Wartsila’s flexible power plants, which can run on sustainable fuels like hydrogen, will also provide the dispatchability needed to ensure reliable power.

NREL Study Identifies Opportunities & Challenges Of Achieving The U.S. Transformational Goal Of 100% Clean Electricity By 2035

At-a-Glance: 

A new report by the National Renewable Energy Laboratory (NREL) examines the types of clean energy technologies and the scale and pace of deployment needed to achieve 100% clean electricity, or a net-zero power grid, in the United States by 2035.

Key Takeaways:

  • Overall, NREL finds multiple pathways to 100% clean electricity by 2035 that would produce significant benefits, but the exact technology mix and costs will be determined by research and development (R&D), manufacturing, and infrastructure investment decisions over the next decade.
  • To achieve 100% clean electricity by 2035, new clean energy technologies will have to be deployed at an unprecedented scale. Modeling shows that wind and solar would need to supply 60% to 80% of generation. Getting there would require an additional 40–90 gigawatts of solar on the grid per year and 70–150 gigawatts of wind per year by the end of this decade – more than four times the current annual deployment levels for each technology.
  • Seasonal storage, like clean hydrogen-fueled combustion turbines, is important when clean electricity makes up about 80%–95% of generation. Achieving the needed amount of storage requires substantial development of infrastructure, including fuel storage, transportation and pipeline networks, and additional generation capacity needed to produce clean fuels.
  • Overall, NREL finds in all modeled scenarios that the health and climate benefits associated with fewer emissions exceed the power system costs to get to 100% clean electricity.

Path to 100% Perspective

Achieving ambitious decarbonization goals will require a reduction of reliance on fossil fuels and an increase in renewable energy. What will be critical to the transformation is a reliable source of energy when sources like wind or solar are not producing enough. The most economical long-duration storage is formed with green hydrogen-based sustainable fuels, such as hydrogen, ammonia, carbon neutral methanol and methane. These fuels can be used to generate electricity in flexible power plants. Such flexible power plants provide carbon neutral firm, dispatchable capacity to the grid at any time.

Sustainable fuels can be produced using a process called Power-to-Gas (PtG), which uses surplus solar and wind energy to produce renewable fuels, like synthetic methane and hydrogen. Hydrogen as a fuel is carbon-free and synthetic methane produced using carbon recycled from the air, is a carbon-neutral fuel.

 

A 100% Renewable Energy Future Is Possible, & We Need It

At-a-Glance: 

A transition to renewable energy is not just one of the most consequential tools at our fingertips to act on climate, but also represents a great opportunity to increase control over our energy choices, improve the health of our communities and the planet, create jobs and wealth, and much more. For more read A 100% Renewable Energy Future Is Possible, & We Need It.

Key Takeaways:

  • A new study called On the Road to 100 Percent Renewables examined how two dozen state members of the U.S. Climate Alliance (USCA) can meet all of their electricity needs with renewable energy — while decarbonizing other sectors of the economy and ensuring equitable benefits to all communities.
  • Using the Regional Energy Deployment System (ReEDS) electricity model from the National Renewable Energy Laboratory, the study found that coal generation in member states essentially disappears by 2040 in USCA states as solar and wind generation grows exponentially.
  • The model found that the US would be about 73% renewable by 2040 because fossil fuel plants will still exist in other states and the power grid is so interconnected that generation is shared across state lines.

Path to 100% Perspective:

The Path to 100% is working to identify the fastest, most cost-effective, most reliable ways to decarbonize electricity — not just city by city, but across entire states and nations. As the article states, increasing the reliance on renewable energy sources, like wind and solar, will be critical to success. We must also determine a plan to realistically phase out fossil fuel plants which provide more consistent, reliable power around the clock. Renewable sources can be intermittent, so battery technology will need to improve and we will need to build flexible power plants that can run on sustainable fuels like hydrogen. The path will not be the same everywhere and the timeline may vary, but a 100% renewable energy future in the United States is possible by 2050 if everyone works together.

Renewable Energy Provided 24% Of US Electricity In December

At-a-Glance: 

In December of 2021, renewable energy sources accounted for nearly 24% of electricity generation across the U.S. Wind energy accounted for 11.9(, and solar accounted for 2.7%. These stats are an increase in comparison with previous years’ data, revealing that the new solar and wind power capacity does lead to noticeable increases in electricity generation from renewable sources. To learn more, read, Renewable Energy Provided 24% Of US Electricity In December.”

Key Takeaways:

    • The U.S. grid is vast, and power plants have lifespan longevity – therefore even 100% of new power capacity from renewable power plants results in a modest increase in the energy share’s electricity supply.
    • In December 2019 and December 2020, both nuclear and coal produced more electricity than renewable energy sources. 
      • In December 2021, renewables had passed both of them up and had a solid lead — 23.8% of electricity compared to 20.6% from nuclear power plants and 17.5% from coal power plants.
    • Renewables accounted for 21% of US electricity in 2021, up from 18.3% in 2019 and 20.3% in 2020.
      • Solar and wind account for the majority of that piece of the pie, 13% of all US electricity production in 2021, up from 9.7% in 2019 and 11.6% in 2020.

Path to 100% Perspective:

The U.S. is a global leader in renewable energy with the second largest installed capacity in the world. Total private sector investment in renewable energy reached a record USD $55.5 billion in 2019, an increase of 28% year on year. Current market trends show the energy landscape is in transition towards more flexible energy systems with a rapidly increasing share of renewable energy, declining inflexible baseload generation and wider applications of storage technology. The declining costs of renewables have begun to reduce new investments into coal and other inflexible baseload technologies; a transition which will eventually cause renewables to become the new baseload.

Federal government support for clean energy has been significantly reduced in recent years, with federal energy initiatives primarily being focused on the fossil fuel sector. However, given the scale and depth of its energy market, the U.S. has the economic and technological potential to scale-up renewable energy at an unprecedented rate.