Chile has set an ambitious goal to decarbonize the country’s electricity generation by 2050, one of the most ambitious decarbonization targets in the world. But how will the country reach its goals?
A recent Wärtsilä white paper, “Chile Leading the World to a 100% Zero Carbon Power System” presents the optimal path for decarbonization in Chile which reaches the country’s carbon reduction targets, serves the load without black-outs, and provides the lowest cost for the rate payers. The study utilizes power system expansion modelling software Plexos to create a timeline of necessary changes to achieve its goals while maintaining a secure supply and managing costs.
According to the white paper, Chile’s remarkable renewable resources coupled with its already proven power generation and storage technologies provide it with the basis to be a leader in solving the decarbonization puzzle. Leaders next need a well-structured and realistic plan to reach its goal and avoid mistakes made by other countries who may have moved too quickly towards decarbonization.
The key to success is using modern power system expansion software and supercomputers to create a proper power system transition plan. According to the white paper, Chile should be taking that step now, along with setting policies to make the transition possible.
“In order to continue the incorporation of renewable energy, it is vital that Chile develops the policy and regulatory framework to incentivize the necessary investments in storage and gas-fired flexible generation during the early parts of this decade” according to the white paper, although the study does not make any specific recommendations on those types of changes.
Just increasing wind and solar power generation won’t be enough. To succeed, investments must be made in battery storage capacity and in flexible gas power plants to compensate when the renewable energy sources aren’t generating enough power to serve the load.
The white paper states that the price of solar and battery storage technologies are declining and should be economically viable by 2026.
The flexible fuel plants won’t cover the base load, but have the capacity to come online quickly as needed and with minimal carbon emissions, giving them the advantage over traditional fossil fuel plants that must remain in operation continuously. Such plants must also have the capability to convert to sustainable fuels in the future.
“During this period the incorporation of storage and flexible gas generation into the Chilean system enables further retirements of coal and diesel oil plants, and greater additions of wind and solar PV. Thereby decarbonization can continue, less coal is burned, and carbon levels begin to fall drastically,” according to the white paper.
By following this plan, Chile should be able to retire its last coal and diesel oil plants by 2030, reducing carbon emissions drastically and relying on renewables for 90% of its energy needs. By then, only the new flexible gas power plants and the few remaining legacy gas-fired power plants will still be using fuel.

Components of a 100% carbon neutral power system
The final step in decarbonizing Chile’s electricity is to convert the flexible gas power plants to operate on green hydrogen based sustainable fuels. These fuels can be produced using excess wind and solar generation, stored, and used to produce power when the renewable sources aren’t generating enough power for extended periods of time, like during a major weather event.
“The cost of electricity generation will remain steady throughout this decade due to heavy investment costs, but contrary to many beliefs, the electricity costs for the rate payers will not increase – they will remain stable during the next 10 years and after 2030 they will be gradually reduced by 39%. Clean power does not have to be expensive!” according to the white paper.
You can read the entire white paper here.
Photo by Bailey Hall on Unsplash