How To Light A Fuse Under The Green Hydrogen Economy

At-a-Glance:

Generating electricity from clean hydrogen has always been elusive. But that may change in the not-so-distant future: the technological, political and environmental factors – the variables to create the hydrogen economy – are aligning. What remains a sticking point, though, is the cost factor. To learn more, read How To Light A Fuse Under The Green Hydrogen Economy.” Reading this article may require a subscription.

Key Takeaways:

  • More than 99% of the world’s hydrogen production comes from fossil fuels (called grey hydrogen). The goal is to get to green hydrogen, where solar and wind power is used to produce electricity that is put through an electrolyzer to create pure hydrogen gas.
  • In the interim, some say that a mix of green and blue (produced from natural gas using carbon capture and storage) hydrogen is a faster and more optimal solution. Currently, green hydrogen can be blended with natural gas at a rate of 15% while getting to 30% is doable.
  • The Los Angeles Department of Power and Water has agreed with Utah authorities to buy much of the output of the Intermountain Power Project which will generate hydrogen from wind and solar.
    • The plant will convert to a natural-gas-combined-cycle facility that can burn hydrogen as a fuel.
    • By 2025, 30% of electricity will come from hydrogen and by 2045, all of it will.
  • In its Hydrogen Economy Outlook, Bloomberg New Energy Finance says that green hydrogen could cut global greenhouse gases by 34% by 2050.
  • “Hydrogen has potential to become the fuel that powers a clean economy,” writes Kobad Bhavnagri, lead author of the Bloomberg report. “If the clean hydrogen industry can scale up, many of the hard-to-abate sectors could be decarbonized using hydrogen, at surprisingly low costs.”

Path to 100% Perspective:

Hydrogen and synthetic fuels, such as hydrogen-based renewable synthetic methane, promise to be an important piece of the decarbonization puzzle. Creating such a flexible power system would accelerate the global transition to 100% clean energy.

 

Photo by Praveen kumar Mathivanan on Unsplash

Black & Veatch leaving coal projects in the dust

At-a-Glance:

Engineering and construction company Black & Veatch has announced it is ceasing participation in coal-based design and construction projects in an attempt to focus on more renewable energy work. Black & Veatch has been its increasing focus on renewable energy and energy storage projects over the last decade. The transition away from coal-based jobs will allow the firm to more fully focus on sustainable energy projects. To learn more, read “Black & Veatch leaving coal projects in the dust.”

Key Takeaways:

  • In an example of the company’s move to clean energy projects, earlier this year it was selected to work on the Intermountain Power Agency Renewal Project, one of the earliest installations of combustion turbine technology designed to use a high percentage of green hydrogen.
  • Black & Veatch will still carry out projects to convert coal plants to cleaner energy sources, as well as decommissioning existing coal plants. The biggest change is the contractor will no longer extend the life of any coal facility.
  • “Any decision of this nature will have an impact, but our global client base is overwhelmingly pushing toward a zero-carbon future,” Mario Azar, president of Black & Veatch’s power business said. “The fundamental challenge for the industry is whether to look to the future or continue to look to the past.

Path to 100% Perspective:

The influence of governments and organizations moving toward a zero-carbon future continues to expand to companies responding to the growing demand of their customers and investors. As the investment in energy-related innovation grows,  the renewable energy future presents more affordability, flexibility and reliability for organizations striving to accelerate decarbonization efforts.

 

Photo by Dominik Vanyi on Unsplash

The Green Hydrogen Revolution Is Now Underway

At-a-Glance:

While renewables are now the fastest growing energy industry, hydrogen is following closely behind in a massive gale. The 21st century will likely witness the rise of a mega-billion hydrogen fuel industry. Countries are taking initial steps to pursue green hydrogen as an energy solution and it is clearly becoming an innovative trend.  The Institute of Energy Economics and Financial Analysis (IEEFA) is tracking dozens of green hydrogen electrolyzer projects around the world with a theoretical combined capacity of 50 GW worth $75 billion. To learn more, read The Green Hydrogen Revolution Is Now Underway.”

Key Takeaways:

  • With the announcement of its 10-year $10.5 billion Green Hydrogen roadmap earlier this month, Spain joins a slew of other countries seeking to develop a zero-emission fuel for trucking, aviation, and shipping.
  • OPEC leader Saudi Arabia is building a green hydrogen facility,capable of producing 650 tons of green hydrogen fuel per day, in its cutting-edge futuristic city of Neom
  • Korea and Japan have both rolled out roadmaps to guide hydrogen-related investment and policy in coming years, including encouraging hydrogen fuel cell vehicle (HFVC) production. 
    • The Toyota Mirai is an HFCV unveiled in 2014 and has 10,300 worldwide sales since December 2019. 
    • Korea’s Hyundai is producing the hydrogen powered SUV Nexo.
  • China’s Hebei province approved $1.2 billion of projects for hydrogen equipment manufacturing, filling stations, fuel cells and hydrogen production, including electrolysis.
  • Perhaps the most ambitious project so far is the Asian Renewable Energy Hub based in Pilbara, Western Australia. The $16 billion initiative could see green hydrogen shipments as early as 2027.

Path to 100% Perspective:

Power-to-hydrogen is an alternate pathway to get to 100% clean energy. Hydrogen as a fuel is carbon free. However, there are costly investments involved with adding hydrogen to the mix because the infrastructure for this fuel still needs to be developed. Thermal power plants designed to burn methane typically cannot burn 100% hydrogen. Existing gas storage facilities, pipelines, compressor stations and distribution lines typically cannot handle 100% hydrogen without expensive upgrades, if not complete replacements.  Still, hydrogen is an efficient and carbon-free alternative to renewable synthetic hydrocarbons and is worth investigating. 

 

 

Photo: Levi Midnight on Unsplash