New York’s plan to expand storage capacity to 6 GW by 2030 includes centralized procurement method

At-a-Glance

On December 28, 2022, New York Governor Kathy Hochul announced a plan for how the state will reach 6 GW of energy storage by 2030, representing at least 20% of peak electricity load. For more, read New York’s plan to expand storage capacity to 6 GW by 2030 includes centralized procurement method.

Key Takeaways

  • The proposed plan is projected to reduce projected future statewide electric system costs by nearly $2 billion and the average customer bill would rise by less than 0.05%, or 46 cents a month.
  • The plan calls for 3,000 MW of new bulk storage that would power about one million homes for up to four hours; 1,500 MW of new retail storage to power about 500,000 homes for up to four hours; and 200 MW of residential storage that would power 120,000 homes for up to two hours.
  • The power would be procured through a competitive Index Storage Credit mechanism that officials say will provide some certainty to projects while saving money for consumers.
  • At least 35% of plan funding would support projects to benefit disadvantaged communities and target fossil fuel peaker plant emissions reductions.
  • Electric utilities would also be required to study the potential of high-value energy storage projects toward providing cost-effective transmission and distribution services not currently available in existing markets.

Path to 100% Perspective

New York’s plans to double its energy storage capacity by 2030 is an important step for the state to reach its goal of 100% zero-emission electricity by 2040. In the big picture, a key piece of the 100% emissions-free electricity puzzle will be to deploy significant amounts of long-duration energy storage, especially from 2030 onward. The need to meet daily ramping needs and energy requirements covering a few hours is currently driving the adoption of short duration battery energy storage. After 2030, multi-day and seasonal week-long gaps between supply and demand will require larger quantities of storage capacity. This is where long duration energy storage and sustainable fuels come in. As well as offering green, firm capacity, sustainable fuels can be stored for many months and can release megawatts of power within minutes when needed, when combusted with thermal balancing power plants.

DOE awards $100 million for innovative floating wind, pumped storage and other emerging clean energy tech

At-a-Glance

Eight companies working on technological advancements in clean energy have been awarded millions in federal funding to help scale up production on innovations that would streamline sectors such as offshore wind and pumped storage. For more, read DOE awards $100 million for innovative floating wind, pumped storage and other emerging clean energy tech.

Key Takeaways

  • Recipients of funding from the Seeding Critical Advances for Leading Energy technologies with Untapped Potential (SCALEUP) are described as “disruptive new technologies” that will be transformational for the industry. The funds will “catalyze” commercialization of the technologies so they can be “broadly deployed.”
  • DOE cited Kent Houston Offshore Engineering’s two floating offshore wind turbine technologies as “disruptive,” noting that the company’s focus on designing more efficient turbines and lowering fabrication costs will lead to floating wind farms producing cheaper electricity while reaching profitability.
  • Quidnet Energy will use DOE funding to scale up its geomechanical pumped storage technology into a system that can be used commercially. Its technology uses subsurface rock layers to avoid some of the limits and expense of traditional pumped storage.
  • The first utility to make use of Quidnet Energy’s technology will be CPS Energy, San Antonio’s municipal utility and the largest one in the U.S.

Path to 100% Perspective

Investments in clean energy technology, like DOE’s SCALEUP funding, are important for bringing innovative decarbonization technologies to scale. A variety of technologies will have a role to play along the Path to 100%, including wind and pumped storage. The missing piece of the puzzle is viable long-term storage technologies which will be needed to provide megawatts of capacity and megawatt hours of energy during long duration seasonal conditions or unexpected renewable droughts. Power-to-X technology is a promising solution, using renewable energy sources like wind and solar to produce green hydrogen and other sustainable fuels that can be used for affordable long-term storage. We look forward to seeing how these eight companies will “disrupt” clean energy tech with their innovations.

Pattern Energy buys 3-GW SunZia transmission project to deliver wind energy from New Mexico to Arizona

At-a-Glance

In July 2022, Pattern Energy Group bought the proposed SunZia transmission project, a 525-kV line set to deliver 3,000 MW to Arizona from wind farms Pattern is developing in New Mexico. For more, read Pattern Energy buys 3-GW SunZia transmission project to deliver wind energy from New Mexico to Arizona.

Key Takeaways

  • Pattern Energy expects to begin full construction of the SunZia transmission project and the SunZia wind projects in 2023, with operations for the bi-directional power line set to start in 2025, and the wind farms coming online in early 2026.
  • Pattern Energy’s announcement that it is buying the first phase of the SunZia project from Southwestern Power Group is part of a surge in transmission activity in the West.
  • The Bureau of Land Management has authorized construction on a 500-kV power line between Arizona and California and Southwestern Power Group is continuing to develop a second SunZia phase, a 500-kV high voltage-alternating current transmission line called El Rio Sol Transmission that would parallel the SunZia line.
  • Pattern Energy has also been marketing its wind generation to utilities in California. In December 2021, the Los Angeles Department of Wind and Power started buying power from Pattern Energy’s 350-MW Red Cloud wind farm in New Mexico for $41/MWh under a 20-year, fixed-price contract.
  • Pattern Energy said it is developing other interstate transmission projects, including the 525-kV Southern Spirit Transmission project, a bi-directional transmission line that would connect the Electricity Reliability Council of Texas to the Southeast market.

Path to 100% Perspective

The SunZia transmission project is just one example of the kinds of infrastructure that will be needed to support the addition of renewable electricity sources on the Path to 100%. These projects also make renewables more accessible for regions that don’t have the capacity to harness wind or solar, ensuring a reliable, resilient supply of power. Resilience and reliability are two key factors that contribute to the success of renewables and our drive toward a net-zero future. But so is flexibility. Adding energy storage and thermal balancing is critical to ensure backup power is available when there is insufficient wind and solar.

The US needs to build a bigger, stronger grid. FERC has a plan for that

At-a-Glance: 

A new federal proposal would task grid operators, states and utilities with planning a grid that can support clean energy over the long term — and fairly share the costs of building it. For more, read The US needs to build a bigger, stronger grid. FERC has a plan for that.

Key Takeaways:

  • The U.S. has abundant clean energy sources but the grid does not reliably connect those sources with population centers that need it the most.
  • The proposal, approved by the Federal Energy Regulatory Commission FERC), would require all regulated transmission providers to undertake planning in a ​“sufficiently long-term, forward-looking basis to meet transmission needs driven by changes in the resource mix and demand.
  • Providers would also need to consider a number of factors in determining the benefits of regional transmission plans to be weighed against the costs of building them. For example, converting to clean energy sources may be more expensive in the short term but would pay off in the long run.
  • The proposal is not final. Stakeholders — including transmission grid operators, state utility and energy regulators, transmission-owning utilities, independent transmission and energy developers — will have months to comment on the proposal before FERC votes on a final rule, potentially before the end of this year. 

Path to 100% Perspective:

The Path to 100% will vary across the world, however the transition must include more clean energy sources, like wind and solar, while reducing the use of fossil fuels like coal. To get there, energy producers must be willing to invest and prepare for future technologies and fuel sources. In addition, governments at all levels must be willing to work with providers by passing laws and regulations that will allow for innovation and progress, even if the benefits are not seen immediately. This FERC proposal is encouraging because it appears to pave the way for that cooperation.

A 100% Renewable Energy Future Is Possible, & We Need It

At-a-Glance: 

A transition to renewable energy is not just one of the most consequential tools at our fingertips to act on climate, but also represents a great opportunity to increase control over our energy choices, improve the health of our communities and the planet, create jobs and wealth, and much more. For more read A 100% Renewable Energy Future Is Possible, & We Need It.

Key Takeaways:

  • A new study called On the Road to 100 Percent Renewables examined how two dozen state members of the U.S. Climate Alliance (USCA) can meet all of their electricity needs with renewable energy — while decarbonizing other sectors of the economy and ensuring equitable benefits to all communities.
  • Using the Regional Energy Deployment System (ReEDS) electricity model from the National Renewable Energy Laboratory, the study found that coal generation in member states essentially disappears by 2040 in USCA states as solar and wind generation grows exponentially.
  • The model found that the US would be about 73% renewable by 2040 because fossil fuel plants will still exist in other states and the power grid is so interconnected that generation is shared across state lines.

Path to 100% Perspective:

The Path to 100% is working to identify the fastest, most cost-effective, most reliable ways to decarbonize electricity — not just city by city, but across entire states and nations. As the article states, increasing the reliance on renewable energy sources, like wind and solar, will be critical to success. We must also determine a plan to realistically phase out fossil fuel plants which provide more consistent, reliable power around the clock. Renewable sources can be intermittent, so battery technology will need to improve and we will need to build flexible power plants that can run on sustainable fuels like hydrogen. The path will not be the same everywhere and the timeline may vary, but a 100% renewable energy future in the United States is possible by 2050 if everyone works together.

Renewable Energy Provided 24% Of US Electricity In December

At-a-Glance: 

In December of 2021, renewable energy sources accounted for nearly 24% of electricity generation across the U.S. Wind energy accounted for 11.9(, and solar accounted for 2.7%. These stats are an increase in comparison with previous years’ data, revealing that the new solar and wind power capacity does lead to noticeable increases in electricity generation from renewable sources. To learn more, read, Renewable Energy Provided 24% Of US Electricity In December.”

Key Takeaways:

    • The U.S. grid is vast, and power plants have lifespan longevity – therefore even 100% of new power capacity from renewable power plants results in a modest increase in the energy share’s electricity supply.
    • In December 2019 and December 2020, both nuclear and coal produced more electricity than renewable energy sources. 
      • In December 2021, renewables had passed both of them up and had a solid lead — 23.8% of electricity compared to 20.6% from nuclear power plants and 17.5% from coal power plants.
    • Renewables accounted for 21% of US electricity in 2021, up from 18.3% in 2019 and 20.3% in 2020.
      • Solar and wind account for the majority of that piece of the pie, 13% of all US electricity production in 2021, up from 9.7% in 2019 and 11.6% in 2020.

Path to 100% Perspective:

The U.S. is a global leader in renewable energy with the second largest installed capacity in the world. Total private sector investment in renewable energy reached a record USD $55.5 billion in 2019, an increase of 28% year on year. Current market trends show the energy landscape is in transition towards more flexible energy systems with a rapidly increasing share of renewable energy, declining inflexible baseload generation and wider applications of storage technology. The declining costs of renewables have begun to reduce new investments into coal and other inflexible baseload technologies; a transition which will eventually cause renewables to become the new baseload.

Federal government support for clean energy has been significantly reduced in recent years, with federal energy initiatives primarily being focused on the fossil fuel sector. However, given the scale and depth of its energy market, the U.S. has the economic and technological potential to scale-up renewable energy at an unprecedented rate.

 

Navigating the evolving state of the storage industry

At-a-Glance: 

At-a-Glance: Wärtsilä’s Vice President of Energy Storage and Optimization, Andy Tang, details that the energy storage industry is in its infancy of a global pricing reset which will impact deployments for years to come. Yet, there are solutions that can help energy providers navigate the dynamics of the shifting market. To learn more, read, “Navigating the evolving state of the storage industry.”

 

Key Takeaways:

  • A decade-long cost decline has driven battery adoption, making the United States the largest market for stationary storage in the world.
    • Bloomberg New Energy Finance predicts that annual demand for lithium-ion batteries will surpass 2.7 terawatt-hours by 2030.
  • The solar industry is dealing with similar industry-wide supply chain constraints that have caused the Solar Energy Industries Association (SEIA) to lower their 2022 forecasts by as much as 25 percent.
  • Integrators will need to do their part to set transparent and reasonable expectations on cost structure and timelines with offtakers.
  • Leveraging weather, use-case, historical system performance and battery data, energy management software can forecast how much power an adjoining plant will produce and take advantage of and balance for price variations, among other insights.

Path to 100% Perspective:

Energy providers are now tasked with navigating the most efficient energy storage deployment tactics in the midst of the industry’s global pricing reset. Battery storage remains a competitive and popular storage option among today’s power system technologies. However, what can utilities and grid operators expect batteries to cost in the coming decades and how will this technology likely evolve to meet market needs in the future?

Short-duration and long-duration energy storage are both necessary in future power systems and they each have different roles. Long-duration storage has been the missing piece of the decarbonization puzzle – it is crucial to manage variability in supply and demand to manage the industry’s pricing shift. 

 

Wärtsilä to optimize and decarbonise gold mine power station in Suriname, South America

At-a-Glance: 

Wärtsilä has contracted with a gold mining company in Suriname to build a 7.8 MW energy storage system to help the company achieve its climate targets and decarbonizations goals. This is the first utility-scale energy storage system to be built in Suriname and Wärtsilä’s first energy storage project in the country. To learn more read: Wärtsilä to optimise and decarbonise gold mine power station in Suriname, South America

Key Takeaways

  • The integrated energy storage system will improve efficiency at the gold mine’s power station by reducing the need for emergency back-up spinning reserve, therefore lowering fuel consumption. 
  • The project is estimated to reduce the mine’s emissions by 5,600 metric tonnes of CO2 equivalent per year. This optimized energy system will extend to improvements across the lifetime of the engines and reduce operation and maintenance costs.
  • The GEMS Digital Energy Platform, Wärtsilä’s advanced energy management system, will control and optimize energy storage and evaluate opportunities to integrate renewable energy assets at the facility to further decarbonise mining operations, further reduce operations costs and provide clean electricity to surrounding communities.

Path to 100% Perspective:

Energy storage simply means capturing produced energy and saving it for later. It is becoming more and more important as we turn to more renewable energy sources, like wind and solar, because they cannot produce a continuous supply of energy around the clock. Being able to store that energy is a key element to reliable, 100% renewable power in the future.

By installing this technology now, the mining company will see improved reliability, efficiency and sustainability. The company is also future-proofing its investments in a changing energy market.

 

Wärtsilä Report Urges 100% Renewables Sooner, Uruguay Proves It Can Happen Now

At-a-Glance:

With the COP26 conference happening in Glasgow, many climate and environmental  groups are urging nations to accelerate the transition to renewable energy. A new report from Wärtsilä entitled Front Loading New Zero argues that nations can adopt 100% renewable systems faster than currently planned. To learn more, read “Wärtsilä Report Urges 100% Renewables Sooner, Uruguay Proves It Can Happen Now.”

Key Takeaways:

  • The new report says significant cost reductions can be achieved by front loading the deployment of renewables — mostly wind and solar — and by utilizing the technologies needed to balance their inherent intermittency with energy storage and thermal generating stations.
  • Wärtsilä CEO Håkan Agnevall explains, “As we approach COP26, our Front-Loading Net Zero report should act as a wake-up call for leaders, as this is our last and best chance to get countries on pathways to carbon neutrality.
  • Sushil Purohit, president of Wärtsilä Energy adds, “There is no single solution that fits all markets, and this report highlights the different paths and technologies that can be utilized. The ultimate aim, however, is common to all and that is to decarbonize energy production and take the fullest advantage of our natural energy sources.”
  • In 2007, Uruguay had to rely on electricity imported from neighbors like Brazil and Argentina.
    • Within 10 years, it had 4,000 MW of installed capacity.
    • Today, 98% of the electricity for its 3.4 million inhabitants comes from renewables, including hydro.

Path to 100% Perspective:

The price of electricity does not need to increase when power systems move to net zero. Utilities are shifting from a costly operational expenditure (opex) model, where capital is continually drawn into fuelling and maintaining legacy inflexible coal, oil, and gas plants – to a new model where up-front capital expenditure (capex) is invested in predictable, low maintenance, renewable energy technology. Flexibility creates the conditions where renewable energy is the most profitable way to power our grids: ensuring back-up power is available when there’s insufficient wind or solar – and earning rewards from capacity mechanisms. Investing in renewable baseload is now viewed as buying ‘unlimited’ power up-front, as opposed to betting against fluctuating oil prices and narrowing environmental regulation.

 

Photo by Ernesto Velázquez on Unsplash

Wärtsilä to Equip Pair of Grid-Connected Texas Energy Storage Systems

At-a-Glance:

Helsinki-based technology group Wärtsilä will supply two Texas energy storage projects with its energy storage technology. The interconnected stand-alone systems will have a combined rated capacity of 200 MW. Wärtsilä has also signed ten-year guaranteed asset performance agreements for the installations. The order was placed by Able Grid Energy Solutions, a utility-scale energy storage project development arm of MAP RE/ES, an energy investment firm. To learn more, read “Wärtsilä to Equip Pair of Grid-Connected Texas Energy Storage Systems.”

Key Takeaways:

  • The Madero and Ignacio energy storage plants will deliver valuable grid support to the Electric Reliability Council of Texas (ERCOT), the body responsible for managing the electric supply to more than 25 million customers.
  • Wärtsilä will supply its next-generation, fully integrated GridSolv Quantum energy storage solution.
  • The systems are expected to become fully operational starting in January 2022.

Path to 100% Perspective: 

The Madero and Ignacio energy storage plants will deliver valuable grid support to ERCOT using the modular solution designed to ease deployment and sustainable energy optimization. The energy storage systems will also be used to monitor and control the flow of energy, enabling these projects to provide grid support for critical periods during extreme weather or grid instability conditions, such as those that happened in Texas during the polar vortex in February 2020.

 

Photo by Jeremy Banks on Unsplash

Yes, America can achieve net zero carbon emissions by 2050. Here’s how.

At-a-Glance:

The loss of life and economic costs stemming from the recent crisis in Texas have demonstrated that electric power is a necessity, not an ordinary commodity. While fact finding has just begun, it’s clear that policy makers must take a hard look at the economic rules and incentives governing the power sector and assess the resilience of a vast array of critical infrastructure. To learn more read,  Yes, America can achieve net zero carbon emissions by 2050. Here’s how.”

Key Takeaways:

3 areas for collaboration:

Current incentives create restraints on rapid change, but can overcome to meet climate goals with effective public-private collaboration in three areas:

  • Support for innovation. The federal government should invest big to help new technologies make the leap from laboratory to marketplace.
  • Inclusive policies. Indulging preferences for some solutions over others might be tenable if there was plenty of time, but getting there will require a massive increase of renewable energy; breakthroughs in energy storage technologies, such as batteries, and in new energy carriers, such as hydrogen.
  • The ability to build big and build fast. To tackle our interrelated climate and energy challenges, America must rediscover the moonshot ambition and collective sense of urgency that allowed us to put a man on the moon in less than 10 years. A century earlier we built the transcontinental railroad in just six years.

Path to 100% Perspective:

As each government and organizational leader considers the landscape of the decade of consequence for the global climate, a clear line of sight to achieve decarbonization has been set by science. 3,000 GW of installed renewable capacity is required by 2030 to achieve the lower Paris target of 2°C5. Fatih Birol, Executive Director of the IEA, said in June 2020 that world leaders have six months to put policies in place to prevent a rebound in emissions that could put that target permanently out of reach. Leaders now face a clear choice: either be shaped by the inherent shocks of a worsening climate emergency or take action to shape the energy system around the needs and impact of a net-zero future.

 

Photo by Luke Stackpoole on Unsplash

Los Angeles now has a road map for 100% renewable energy

At-a-Glance:

Los Angeles is one of the last places in California still burning coal for electricity — and if all goes according to plan, it could become one of the country’s first major cities to nearly eliminate fossil fuels from its power supply. In a first-of-its-kind study commissioned by the city and released, the National Renewable Energy Laboratory concluded L.A. is capable of achieving 98% clean energy within the next decade and 100% by 2035, meeting one of President Biden’s most ambitious climate goals. And it can do so without causing blackouts or disrupting the economy, the federal research lab found, undercutting two of the most common arguments used by opponents of climate action. To learn more, read “Los Angeles now has a road map for 100% renewable energy.”  Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • The NREL study team included nearly 100 people and was aided by the “Eagle” supercomputer at the research lab’s Golden, Colo., headquarters.
  • They conducted an energy systems analysis they believe to be unprecedented in scope and detail, running more than 100 million simulations since 2017 and integrating heaps of modeling data on electricity use, job creation, weather conditions, power lines and the potential for rooftop solar panels on houses across Los Angeles, among other topics.
  • Under a different scenario, L.A. would still get about 10% of its electricity from gas come 2045, down from 24% today.
  • Every pathway outlined by NREL includes geothermal power plants, which tap the Earth’s subterranean heat and can generate climate-friendly energy around the clock, as well as pumped hydropower, which can store solar and wind longer than a typical battery. Several pathways in the study also assume the city keeps its 5.7% ownership stake in Arizona’s Palo Verde nuclear plant.

Path to 100% Perspective:

California already has the natural gas infrastructure in place to follow the Optimal Path. The state’s existing gas storage capacity and distribution systems can easily provide the necessary 8 TWh of reliable, fully dispatchable renewable energy while using only 15 percent of existing underground gas storage capacity. This alleviates concerns around “stranded assets” since flexible generation plants can shift at any time to burn synthetic methane, even before 2045. California’s current plan without thermal generation would require an investment of $309 billion between 2021 and 2045 to add another 1,624 GWh of battery storage and electricity generation cost would jump to a sky-high 128 $ / MWh. However, the Optimal Path would save the state $176 billion with Power-to-Gas and thermal generation as long term energy storage between 2021 and 2045 and electricity generation cost would be $50 / MWh in 2045. More batteries without thermal generation is not affordable and is not enough to create a resilient or reliable grid.

 

Photo by Denys Nevozhai on Unsplash