Keeping the lights on in extreme conditions: Three power plants put to the test

At-a-Glance

In addition to the basic function of providing grid capacity and energy to their customers, some utilities have additional motivation behind their desire to build a new power plant, particularly as extreme weather, natural disasters, and geopolitical conflicts continue to threaten our power systems. For more, read Keeping the lights on in extreme conditions: Three power plants put to the test.

Key Takeaways

  • In Palmer, Alaska, Mantanuska Electric Association (MEA) built a 170 MW self-generation power plant with ten Wartsila 18V50DF engines. The plant is dual-fuel capable, with the primary fuel being natural gas, and is designed and built to withstand high seismic forces.
  • This foresight proved well-founded when the area experienced a 7.1 magnitude earthquake in November 2018. The facility experienced only minor damage and MEA restored power to most of their territory in less than 24 hours.
  • On Oahu, Hawaiian Electric (HECO) built the highly efficient, flexible 50 MW Schofield Generating Station to provide energy security and resiliency for the Schofield Barracks Army Base. The plant has six Wartsila 20V34DF engines that run on biofuel.
  • In May 2021, HECO performed a demonstration full-system test in which the microgrid serving the Base as an islanded load was successfully established and operated for 36 hours without any interruptions.
  • In New Orleans, Louisiana, Entergy replaced a 1960’s era steam generation plant with the New Orleans Power Station (NOPS), a highly efficient plant that includes seven Wartsila 18V50SG sets producing 128 MW. The plant was designed to withstand high winds and extreme rainfall present during hurricanes.
  • When Hurricane Ida struck South Louisiana in August 2021, Entergy reported that within 48 hours, NOPS was restarted and connected to the local grid.

Path to 100% Perspective

Extreme weather, natural disasters, and the variability of renewable power sources like wind and solar demand greater resiliency in our power systems. Flexible engine power plants offer not just resiliency but also the flexibility and high efficiency that are needed to balance the intermittency of renewable energy and variable weather conditions, proving it’s possible to keep the lights on while meeting decarbonization goals. Dispatchability, dual- and multi-fuel capabilities, low minimum operating levels, zero minimum down times and run times, and fast ramp speeds are all characteristics that utilities and power providers should keep in mind when designing and building resilient energy systems of the future.

California’s Big 2021 Decision on Grid Reliability: Expand Supply or Manage Demand?

At-a-Glance:

California is facing a major decision under a tight deadline — whether it should push for large-scale power plants and batteries to prevent a repeat of its August 2020 rolling blackouts this coming summer or turn to behind-the-meter resources such as batteries and demand response. To learn more, read California’s Big 2021 Decision on Grid Reliability: Expand Supply or Manage Demand?” 

Key Takeaways:

  • The California Public Utilities Commission (CPUC) issued a ruling in late December asking the state’s three big investor-owned utilities to find ways to expand supply-side capacity before August 2021.
  • Demand-side solutions – behind-the-meter batteries, smart thermostats, and commercial and industrial demand response – may be a more realistic set of options to meet CPUC’s August 2021 deadline.
  • The joint California agency root-cause analysis into last summer’s grid emergency highlighted “demand response and flexibility” as the resources most likely to be able to be added by mid-2021.
  • Existing rules may be dampening the potential for capturing California’s nation-leading roster of behind-the-meter resources, which adds up to gigawatts’ worth of latent capacity.
  • Barriers aren’t stopping companies from enlisting new demand-response and behind-the-meter-battery customers in California. Oakland-based startup, OhmConnect raised $100 million in December 2020 from Google-affiliated Sidewalk Infrastructure Partners to build out 550 MW of residential load flexibility via smart thermostats and Wi-Fi-connected smart plugs.

Path to 100% Perspective:

Opening up greater demand-response flexibility in California will not only help prevent grid emergencies like those experienced during the rolling blackouts last summer; it will also help advance California’s efforts on the Path to 100% clean electricity. California should pursue an approach that includes adding new innovative demand response systems and more thermal generation flexibility.

 

Photo by Kai Gradert on Unsplash

Ditch Nuclear And Save $860 Million With Grid Flexibility, U.K. Told 

At-a-Glance

According to the report from Finnish energy tech firm Wärtsilä, the U.K. would stand to save $860 million per year if, instead of new nuclear power, the government backed grid flexibility measures, such as battery storage and thermal generation. That equates to a saving of about $33 dollars per British household per year. Crucially, the analysis revealed that even if energy generation was to remain the same as it is today, Britain could increase renewables’ share of that generation to 62% simply by adding more flexibility. To learn more, read Ditch Nuclear And Save $860 Million With Grid Flexibility, U.K. Told.” Reading this article could require a subscription.

Key Takeaways

  • According to the Wärtsilä report, Germany at one point paid almost $1.1 million per hour to export 10.5 gigawatts of electricity. Such inefficiencies, Ville Rimali, growth and development director at Wärtsilä Energy said, were indicative of inflexible electricity systems—while countries that had built flexibility into their power grids had no such issues.
  • On the other hand, investing in nuclear power could, according to Wärtsilä, entrench an inflexible grid while making renewables such as solar and wind less cost-effective.
  • Wärtsilä’s recommendations appear to align closely with those of the International Energy Agency (IEA), which has stated that, as economies move away from fossil fuels, “power system flexibility has become a global priority.” Subsequently, according to a report released by the agency last month, much faster deployment of grid flexibility will be required if countries are to achieve their decarbonization targets.

Path to 100% Perspective

In the “Optimising the UK’s Shift to a Renewable-Powered Economy, Wärtsilä recommends a three phase strategy to accelerate a cost-optimal shift to 100% renewable energy and economic decarbonisation. 

  1. Support faster renewable energy deployment to achieve 80% renewable generation by 2030. 
  2. Increase investment in flexibility to unlock renewable energy and deliver a cost-optimal transition for consumers. 
  3. Future-proof today’s decisions to enable future technologies – such as Power-to-X – to achieve 100% renewable energy before 2050

 

Photo by Nicolas Hippert on Unsplash