US wind, solar tripled over the past decade: analysis

At-a-Glance: 

The United States generated three times as much renewable electricity from the sun and wind last year in comparison to 2012, a new analysis has found. Seven states alone now produce enough electricity from these sources, as well as geothermal energy, to cover half of their consumption, according to an online energy dashboard. Read more in US wind, solar tripled over the past decade: analysis.

Key Takeaways:

  • Just five years earlier, none of the states mentioned— South Dakota, Iowa, North Dakota, Kansas, Wyoming, Oklahoma and New Mexico — had achieved this level of renewable energy progress.
  • Among the dashboard’s key findings was evidence that the U.S. produced enough wind energy to power 35 million typical homes in 2021 — or 2.7 times as much wind energy as in 2012. 
  • The U.S. also generated enough solar energy that year to power 15 million homes — or 15 times as much solar energy as in 2012, according to the dashboard. 
  • The dashboard found that the country now has nearly 4.7 gigawatts of battery storage, or 32 times as much as in 2012. This helps support the use of more renewable energy and keep the lights on during extreme weather events. 
  • California, Texas and Florida exhibited the most growth in solar power and battery storage from 2012 to 2021, while Texas, Oklahoma and Iowa ranked highest for wind power growth.

Path to 100% Perspective

The rise in renewables is a key step in the Path to 100%, and the numbers should continue to grow as the Inflation Reduction Act makes now a perfect time to invest in clean energy technology.

As mentioned in the article, the key to integrating renewable energy into the system is backup power– both thermal and storage. That’s because solar and wind are variable– you can’t always count on them to produce power at peak demand times.

A “Supercharge” Of Renewable Energy Development Is Taking Place Around Us

At-a-Glance: 

Incentives in The Inflation Reduction Act (IRA) will lower the cost of renewable energy in the U.S. dramatically over the next decade, according to analysis from the ICF Climate Center, a global consulting firm. They’ve deduced that the new US climate law will make clean energy projects easier to finance across the country, quickening the pace of the US energy transition.  For more read: A “Supercharge” Of Renewable Energy Development Is Taking Place Around Us.

Key Takeaways:

  • All of the technologies the authors of this report analyzed —  whether mature wind and solar or emerging battery, hydrogen, and carbon capture and sequestration (CCS) — would see double digit percentage declines. 
  • The IRA’s broad definition of energy storage for the ITC should help emerging alternatives to lithium ion batteries come to market, increasing the diversity of energy storage options, 
  • Hydrogen could see the biggest cost decline — a huge reduction anywhere from 52% to 67% — of any technology. Green hydrogen facilities that take advantage of the climate law’s tax credits could become cost-competitive with new natural-gas-powered facilities by 2030.
  • The authors assume within their projections that policymakers will address some sticky obstacles confronting clean energy projects, including “not in my backyard” (NIMBY) reactions and interconnection problems.

Path to 100% Perspective

A 100% renewable energy future in the United States is possible by 2050 if everyone works together, and the IRA definitely sets the stage for an influx of development. While increasing renewable energy sources, like wind and solar, the U.S. must also determine a plan to realistically phase out fossil fuel plants. Renewable sources can be intermittent, so battery technology will need to improve. Investing in technology like Wartsila’s flexible power plants, which can run on sustainable fuels like hydrogen, will also provide the dispatchability needed to ensure reliable power.

How Clean Energy Kept California’s Lights On During A Historically Extreme Heat Wave

At-a-Glance: 

A two-week heat wave in California put the electric grid to an extreme test, but despite record demand the power stayed on, largely due to the fact that the state has gone all-in on clean energy technology like wind, solar, battery storage, and demand response. For more read: How Clean Energy Kept California’s Lights On During A Historically Extreme Heat Wave.

Key Takeaways:

  • Batteries played a critical role in keeping the grid running, and without them we would have experienced rolling blackouts. California has more than 3.2 GW of batteries supporting the grid, up from just 250 megawatts in 2020. These batteries typically provide four hours of energy, so that’s 150 times more energy from just two years ago. 
  • Customers also played a part, drastically reducing power usage after text alerts asked them to conserve power. This did help, but can’t be relied upon in every situation.
  • Renewable energy sources helped, too, but did need battery backup. Solar provided a consistent source of power during the day, but dropped off in the evening, when the demand increased. Wind did pick up in the evening. 
  • The state is racing to install more solar, wind, batteries, as well as transmission to connect all these new resources to the grid.

Path to 100% Perspective

It’s encouraging to hear that 10 states have already set decarbonization goals, but it isn’t enough. The Path to 100% will take support from everyone– from government and business leaders to private citizens. While the path isn’t the same everywhere, it includes some common steps, like increasing the use of renewables while incorporating storage and flexible power plants that can provide a source of energy backup when renewables like wind and solar are not enough. Without a plan to ensure firm, reliable power at all times, support of the energy transition could decrease.

 

 

NREL Study Identifies Opportunities & Challenges Of Achieving The U.S. Transformational Goal Of 100% Clean Electricity By 2035

At-a-Glance: 

A new report by the National Renewable Energy Laboratory (NREL) examines the types of clean energy technologies and the scale and pace of deployment needed to achieve 100% clean electricity, or a net-zero power grid, in the United States by 2035.

Key Takeaways:

  • Overall, NREL finds multiple pathways to 100% clean electricity by 2035 that would produce significant benefits, but the exact technology mix and costs will be determined by research and development (R&D), manufacturing, and infrastructure investment decisions over the next decade.
  • To achieve 100% clean electricity by 2035, new clean energy technologies will have to be deployed at an unprecedented scale. Modeling shows that wind and solar would need to supply 60% to 80% of generation. Getting there would require an additional 40–90 gigawatts of solar on the grid per year and 70–150 gigawatts of wind per year by the end of this decade – more than four times the current annual deployment levels for each technology.
  • Seasonal storage, like clean hydrogen-fueled combustion turbines, is important when clean electricity makes up about 80%–95% of generation. Achieving the needed amount of storage requires substantial development of infrastructure, including fuel storage, transportation and pipeline networks, and additional generation capacity needed to produce clean fuels.
  • Overall, NREL finds in all modeled scenarios that the health and climate benefits associated with fewer emissions exceed the power system costs to get to 100% clean electricity.

Path to 100% Perspective

Achieving ambitious decarbonization goals will require a reduction of reliance on fossil fuels and an increase in renewable energy. What will be critical to the transformation is a reliable source of energy when sources like wind or solar are not producing enough. The most economical long-duration storage is formed with green hydrogen-based sustainable fuels, such as hydrogen, ammonia, carbon neutral methanol and methane. These fuels can be used to generate electricity in flexible power plants. Such flexible power plants provide carbon neutral firm, dispatchable capacity to the grid at any time.

Sustainable fuels can be produced using a process called Power-to-Gas (PtG), which uses surplus solar and wind energy to produce renewable fuels, like synthetic methane and hydrogen. Hydrogen as a fuel is carbon-free and synthetic methane produced using carbon recycled from the air, is a carbon-neutral fuel.

 

1 In 3 Americans Live In State With 100% Clean Electricity Commitment

At-a-Glance: 

While only ten states in the United States have set 100% renewable energy goals, 1 out of every 3 Americans actually live in a state that has made some sort of clean electricity commitment. California accounts for the seemed disparity, since it’s home to so many people. Read more in 1 In 3 Americans Live In State With 100% Clean Electricity Commitment.

Key Takeaways:

  • Since it is home to 39.35 million people, 12% of the USA’s population of 329.5 million, California alone already puts us at 1 out of every 8 Americans.
  • These 10 states have made a clean energy commitment: California, Hawaii, New Mexico, Washington, Rhode Island, Maine, New York, Virginia, Oregon, and Illinois.
  • If you don’t live in a state with clean energy goals, Environment America writes, “Tell your governor to commit to 100% renewable.” Included at this link is a way to quickly and easily send a message to your governor pushing for a 100% renewable electricity commitment. 
  • in the private sector, a great source for encouraging and tracking commitments from companies around the world is RE100. RE100 reports that there are now 370+ companies that have 100% renewable commitments of some sort.

Path to 100% Perspective

It’s encouraging to hear that 10 states have already set decarbonization goals, but it isn’t enough. The Path to 100% will take support from everyone– from government and business leaders to private citizens. While the path isn’t the same everywhere, it includes some common steps, like increasing the use of renewables while incorporating storage and flexible power plants that can provide a source of energy backup when renewables like wind and solar are not enough. Without a plan to ensure firm, reliable power at all times, support of the energy transition could decrease.

 

 

DOE awarding $540 million to ramp up clean energy research

At-a-Glance: 

The United States Department of Energy (DOE) announced it will grant 54 universities and 11 national labs over $500 million to conduct research on clean energy technologies and low-carbon manufacturing, ranging from direct air capture to carbon storage and sequestration. The move comes on the heels of the passage of President Biden’s historic Inflation Reduction Act, which aims to significantly cut emissions by 2030. By 2050, Biden hopes to have a net-zero emissions economy. Read more in DOE awarding $540 million to ramp up clean energy research.

Key Takeaways:

  • “Meeting the Biden-Harris Administration’s ambitious climate and clean energy goals will require a game-changing commitment to clean energy — and that begins with researchers across the country,” said U.S. Secretary of Energy Jennifer M. Granholm in a statement
  • Carbon dioxide emissions resulting from fossil fuel use are a significant driver of climate change.
  • A large portion of the money, $400 million, will go towards establishing and maintaining 43 Energy Frontier Research Centers, while these projects will study multiple topics including energy storage and quantum information science. 

Path to 100% Perspective

This is a great commitment by the U.S. federal government to influence positive change. While many of the tools for decarbonization already exist, there are problems to overcome like how to create long-term energy storage. There is promise in Power-to-X technology, a carbon-neutral solution that uses renewable energy to produce green hydrogen and other future fuels that can be used for affordable long-term storage. It is exciting to see the outcome of the vast research resources now committed to this effort.

 

 

 

Utilities are planning to shift to clean energy — just not too quickly

At-a-Glance: 

CEO of electricity research group EPRI says U.S. utilities are poised to go big on solar, wind and batteries — but they aren’t ready to give up their gas and coal plants just yet.

“You will also hear every one of [these utilities] saying that if we don’t take care of affordability and reliability, that will be the biggest obstacle to go to clean energy, because if customers get upset, it will have a negative impact on the clean energy transition.” said Arshad Mansoor, CEO of the Electric Power Research Institute. Read more in Utilities are planning to shift to clean energy — just not too quickly

Key Takeaways:

  • At EPRI’s Electrification 2022 conference, leading utilities unanimously embraced cutting carbon emissions and electrifying transportation. However, they urged caution at moving too quickly.
  • Most utilities know this is the decade to invest in wind, solar and battery storage. They have determined that grids can handle levels of renewable generation that were previously unthinkable — in fact, this is already happening in many states.
  • The COVID pandemic came at the worst time, causing major delays in the supply chain and slowing the construction of renewable resources.
  • Mansoor feels it may be necessary to keep some coal plants around as backup power sources to ensure a reliable power source, because wind and solar power is not always reliable and battery technology is not yet capable of long-term duration.
  • He says clean firm resources such as small modular nuclear reactors or clean hydrogen-burning turbines could eventually take that role, as could cheap long-duration energy storage, but they’re all still years away.

Path to 100% Perspective

The Path to 100% agrees that the way to a 100% clean energy future is through increased renewable energy sources like wind and solar power while maintaining a reliable backup system. To balance the intermittent nature of these renewable power sources, engine power plants and energy storage are ideal. While we are waiting for battery storage to improve, Wartsila’s flexible power plants are already generating reliable, backup power when solar and wind are not enough. They are capable of powering up and down quickly, unlike traditional coal-powered thermal power plants which could take hours to ramp up when energy is needed.