The Future Of Carbon Capture Is In The Air

At-a-Glance 

While renewable energy is now widely accepted as the cheapest form of electricity generation, energy demand growth, government growth requirements and the need for a responsible transition mean fossil fuels will still have a role. But for that to work with climate goals, carbon capture and storage (CCS) technology must be mainstreamed. In Iceland, Climeworks is showing how direct air capture/storage (DAC) could change the game. To learn more, read “The Future Of Carbon Capture Is In The Air.” Reading this article could require a subscription.

Key Takeaways

  • Climeworks new plant, named Orca, will combine Swiss-based Climeworks’ direct air capture technology with the underground storage of carbon dioxide provided by Iceland’s Carbfix and the plant should be online in spring 2021. 
  • What makes Climeworks use of DAC so interesting is that it doesn’t just work in removing emissions associated specifically with power generation, but can capture emissions directly from the air. This is the company’s largest plant so far, intended to capture around 4,000 tons of CO2 per year.
  • There has been significant movement in the CCS market recently. In the UK, as part of its recently announced green infrastructure plans, the government has promised £1 billion to set up four industrial clusters for CCS. 
  • The Norwegian government is working with Equinor, Shell and Total on a project intended to standardize and scale carbon capture, transportation and storage in Europe. The Northern Lights Project is expected to capture CO2 from industry in the Oslo-fjord region, following which the carbon will be liquefied and shipped to an onshore terminal on the Norwegian west coast and then taken out to the North Sea for long term subsea storage.
  • In Canada, Carbon Engineering says its technology can be scaled up to remove up to 1 million tons of CO2 from the air annually, with a large-scale plant in development with Occidental Petroleum with a completion date reported to be 2026. 

Path to 100% Perspective

Capturing carbon dioxide from the air, utilizing synthesis to combine these into hydrocarbons suitable for synthetic renewable fuels offers substantial opportunities to take valuable steps towards carbon neutral communities. These renewable fuels could be used in transportation, energy storage and energy distribution which improves power system sustainability, reliability and flexibility.

 

Photo by Thomas Kolbeck on Unsplash

Ditch Nuclear And Save $860 Million With Grid Flexibility, U.K. Told 

At-a-Glance

According to the report from Finnish energy tech firm Wärtsilä, the U.K. would stand to save $860 million per year if, instead of new nuclear power, the government backed grid flexibility measures, such as battery storage and thermal generation. That equates to a saving of about $33 dollars per British household per year. Crucially, the analysis revealed that even if energy generation was to remain the same as it is today, Britain could increase renewables’ share of that generation to 62% simply by adding more flexibility. To learn more, read Ditch Nuclear And Save $860 Million With Grid Flexibility, U.K. Told.” Reading this article could require a subscription.

Key Takeaways

  • According to the Wärtsilä report, Germany at one point paid almost $1.1 million per hour to export 10.5 gigawatts of electricity. Such inefficiencies, Ville Rimali, growth and development director at Wärtsilä Energy said, were indicative of inflexible electricity systems—while countries that had built flexibility into their power grids had no such issues.
  • On the other hand, investing in nuclear power could, according to Wärtsilä, entrench an inflexible grid while making renewables such as solar and wind less cost-effective.
  • Wärtsilä’s recommendations appear to align closely with those of the International Energy Agency (IEA), which has stated that, as economies move away from fossil fuels, “power system flexibility has become a global priority.” Subsequently, according to a report released by the agency last month, much faster deployment of grid flexibility will be required if countries are to achieve their decarbonization targets.

Path to 100% Perspective

In the “Optimising the UK’s Shift to a Renewable-Powered Economy, Wärtsilä recommends a three phase strategy to accelerate a cost-optimal shift to 100% renewable energy and economic decarbonisation. 

  1. Support faster renewable energy deployment to achieve 80% renewable generation by 2030. 
  2. Increase investment in flexibility to unlock renewable energy and deliver a cost-optimal transition for consumers. 
  3. Future-proof today’s decisions to enable future technologies – such as Power-to-X – to achieve 100% renewable energy before 2050

 

Photo by Nicolas Hippert on Unsplash

San Antonio Utility Taking Steps Into An Ultra-Green Future

At-a-Glance:

Electric utilities are making efforts to reduce and end carbon emissions. But right now, they’re struggling with the overselling of alternatives when they don’t have enough essential backup in the form of storage. They also have the huge imperative of maintaining service — in lay terms, keeping the lights on. CPS Energy, San Antonio’s municipally owned electric and gas utility with over 860,000 electric and 358,000 gas customers, is putting its best big green foot forward, but wants to avoid being trapped into rigidity. To learn more, read “San Antonio Utility Taking Steps Into An Ultra-Green Future.”

Key Takeaways:

  • CPS Energy has canvassed the world, seeking ideas that will best deliver 500 MWe of new technology, 900 MWe of solar power and 50 MWe of storage.
  • In response to the CPS Energy July request for information (RFI), the utility has received nearly 200 expressions of interest from around the world.
  • The responses break down this way:
    • Refined gas-powered generation, turbines or reciprocating engines
    • Compressed-air energy storage
    • Liquid air (cryogenic) energy storage
    • Thermal energy storage, using mostly waste heat in concrete or rock hosts
    • Underground pumped hydro, using abandoned oil wells and mines for the drop
    • Kinetic storage with flywheels
  • These technologies promise longer duration, higher efficiency, and less degradation than today’s available battery storage, CPS Energy leadership said.

Path to 100% Perspective:

CPS has developed a Flexible Path plan with goals of reaching an 80 percent non-carbon-emitting energy portfolio by 2040 and reaching net-zero carbon emissions by 2050. The Texas municipal utility plans to add about 900 megawatts of solar, 50 megawatts of energy storage and 500 megawatts of new technology solutions, to include alternative fuels.

 

Photo by Johannes Plenio on Unsplash