Ditch Nuclear And Save $860 Million With Grid Flexibility, U.K. Told 

At-a-Glance

According to the report from Finnish energy tech firm Wärtsilä, the U.K. would stand to save $860 million per year if, instead of new nuclear power, the government backed grid flexibility measures, such as battery storage and thermal generation. That equates to a saving of about $33 dollars per British household per year. Crucially, the analysis revealed that even if energy generation was to remain the same as it is today, Britain could increase renewables’ share of that generation to 62% simply by adding more flexibility. To learn more, read Ditch Nuclear And Save $860 Million With Grid Flexibility, U.K. Told.” Reading this article could require a subscription.

Key Takeaways

  • According to the Wärtsilä report, Germany at one point paid almost $1.1 million per hour to export 10.5 gigawatts of electricity. Such inefficiencies, Ville Rimali, growth and development director at Wärtsilä Energy said, were indicative of inflexible electricity systems—while countries that had built flexibility into their power grids had no such issues.
  • On the other hand, investing in nuclear power could, according to Wärtsilä, entrench an inflexible grid while making renewables such as solar and wind less cost-effective.
  • Wärtsilä’s recommendations appear to align closely with those of the International Energy Agency (IEA), which has stated that, as economies move away from fossil fuels, “power system flexibility has become a global priority.” Subsequently, according to a report released by the agency last month, much faster deployment of grid flexibility will be required if countries are to achieve their decarbonization targets.

Path to 100% Perspective

In the “Optimising the UK’s Shift to a Renewable-Powered Economy, Wärtsilä recommends a three phase strategy to accelerate a cost-optimal shift to 100% renewable energy and economic decarbonisation. 

  1. Support faster renewable energy deployment to achieve 80% renewable generation by 2030. 
  2. Increase investment in flexibility to unlock renewable energy and deliver a cost-optimal transition for consumers. 
  3. Future-proof today’s decisions to enable future technologies – such as Power-to-X – to achieve 100% renewable energy before 2050

 

Photo by Nicolas Hippert on Unsplash

San Antonio Utility Taking Steps Into An Ultra-Green Future

At-a-Glance:

Electric utilities are making efforts to reduce and end carbon emissions. But right now, they’re struggling with the overselling of alternatives when they don’t have enough essential backup in the form of storage. They also have the huge imperative of maintaining service — in lay terms, keeping the lights on. CPS Energy, San Antonio’s municipally owned electric and gas utility with over 860,000 electric and 358,000 gas customers, is putting its best big green foot forward, but wants to avoid being trapped into rigidity. To learn more, read “San Antonio Utility Taking Steps Into An Ultra-Green Future.”

Key Takeaways:

  • CPS Energy has canvassed the world, seeking ideas that will best deliver 500 MWe of new technology, 900 MWe of solar power and 50 MWe of storage.
  • In response to the CPS Energy July request for information (RFI), the utility has received nearly 200 expressions of interest from around the world.
  • The responses break down this way:
    • Refined gas-powered generation, turbines or reciprocating engines
    • Compressed-air energy storage
    • Liquid air (cryogenic) energy storage
    • Thermal energy storage, using mostly waste heat in concrete or rock hosts
    • Underground pumped hydro, using abandoned oil wells and mines for the drop
    • Kinetic storage with flywheels
  • These technologies promise longer duration, higher efficiency, and less degradation than today’s available battery storage, CPS Energy leadership said.

Path to 100% Perspective:

CPS has developed a Flexible Path plan with goals of reaching an 80 percent non-carbon-emitting energy portfolio by 2040 and reaching net-zero carbon emissions by 2050. The Texas municipal utility plans to add about 900 megawatts of solar, 50 megawatts of energy storage and 500 megawatts of new technology solutions, to include alternative fuels.

 

Photo by Johannes Plenio on Unsplash