Rich in renewable energy, Chile seeks to become global hydrogen powerhouse

At-a-Glance:

As a net importer of fuels, Chile has not been a significant player in global energy markets. But the sun-drenched, wind-rich South American country aims to become a titan in the burgeoning green hydrogen economy, setting a goal to become one of the world’s top three exporters by 2040. The hydrogen economy is still taking shape, and the world is waiting for the costs of the technology to fall. Multinational companies are taking up the offer, looking to use Chile’s rich renewable energy resources to make breakthroughs in green hydrogen and take advantage of potential government subsidies. To learn more, read, “Rich in renewable energy, Chile seeks to become global hydrogen powerhouse.”

Key Takeaways:

  • Chilean President Sebastian Piñera’s outgoing administration launched its National Green Hydrogen Strategy in November 2020.
    • The goal is to have 5 GW of electrolysis capacity under development by 2025 and to create the cheapest green hydrogen on the planet by 2030.
  • Mining companies in the region are looking to hydrogen to slash operational costs by eliminating the expensive importation of diesel fuel.
    • They also believe green hydrogen can be used for electricity at mining sites alongside cheap renewable energy resources.
  • Beyond mining, companies are using Chile as a testing ground to create both ammonia and synthetic fuels from green hydrogen.
  • Roughly half of Chile’s installed power generation capacity for 2021 was sourced with renewable energy resources, making the production of green hydrogen easier.
  • Operators of coal-fired plants in the country, including international firms AES Corp., Enel SpA and Engie SA, have announced plans in 2021 to shut down such facilities and increase investments in renewables.

Path to 100% Perspective:

Chile has one of the most ambitious decarbonization plans in the world, targeting carbon neutral electricity in 2050. This South American country is already at a 70% renewable energy share with some of the world´s best wind and solar resources available. It is possible to retire coal in Chile before 2030 and to reach a 100% carbon neutral power system before 2050. Although competitive renewable energy and battery storage are available, the missing piece of the puzzle is long-term energy storage, which has the role of ensuring proper system function and reliability even during longer usual weather patterns such as drought, extreme heat or cold waves, cloud cover and rain, low wind periods as well as low solar seasons such as winter. Utilizing the Power-to-Fuel-to-Power as the long term energy storage can save Chile an estimated 17 billion dollars or 26% in investments and enables lower generation costs with better system reliability.

 

Photo by Ximena Nahmias on Unsplash

Big Oil Companies Push Hydrogen as Green Alternative, but Obstacles Remain

At-a-Glance:

Big oil companies have long touted hydrogen energy as a way to reduce carbon emissions. Now they are grappling with how to make that a reality. BP, Royal Dutch Shell and TotalEnergies SE are all pursuing multimillion-dollar hydrogen projects, often with government support, as they seek to redefine their future role in a world less reliant on fossil fuels. Hydrogen made using renewable energy can be produced and used without emitting carbon dioxide. The challenge is to make it using renewable power instead and produce it on an industrial scale, in the hope of bringing down costs. To learn more, read “Big Oil Companies Push Hydrogen as Green Alternative, but Obstacles Remain.” Reading these articles may require a subscription from the media outlets.

Key Takeaways:

  • Oil companies are pursuing green hydrogen, which they see as a longer-term goal, while also looking at applying carbon-capture technology to fossil-fuel-based hydrogen production as a way to clean up the gas in the interim.
  • As of the end of June, there were 244 large-scale green hydrogen projects planned, according to the Hydrogen Council, an industry group, up more than 50% since the end of January. It estimates tens of billions of dollars have already been earmarked for hydrogen projects.
  • In the U.S., the Energy Department has said it aims to reduce the cost of green hydrogen by 80% to $1 per kilogram in the next decade, in part by supporting pilot projects.

Path to 100% Perspective:

U.S. renewable energy adoption continues to rise. In 2019, renewable energy sources accounted for 17.5% of total utility-scale electricity generation, with renewable energy generation reaching 720 TWh. However, allocation of current energy stimulus, $100 billion USD, is tied to the fossil fuel sector, which limits the potential for decarbonization. More than 70% of energy stimulus funding in the U.S. is currently allocated to legacy fossil fuels, compared to less than 30% to clean energy. Large oil companies are maximizing government support to make the energy transition, but a larger federal investment in clean energy instead of fossil fuels could accelerate the decarbonization process. 

 

Photo by Enlsipomy on Unsplash

Wärtsilä launches project to develop 100% hydrogen-fueled engine and power plant concept by 2025

At-a-Glance:

Technology company Wärtsilä announced an initiative to develop an engine and power plant concept that will be able to run on 100% hydrogen by 2025, in a move that could contribute to widespread decarbonization of the electric power industry and other sectors. The company’s new project aims to develop that concept by 2025, and commercialize it by the end of the decade. To learn more, read “Wärtsilä launches project to develop 100% hydrogen-fueled engine and power plant concept by 2025,” or “Everything we know about Wärtsilä Energy’s hydrogen engines.” Reading these articles may require a subscription from the media outlets.

Key Takeaways:

  • Roughly one in three people in the U.S. live in a state or city that is trying to transition to 100% clean electricity, according to Natural Resources Defense Council (NRDC), with the Biden administration pushing for a national 100% standard by 2035.
  • “Our base engine concept is very flexible — it can take very different types of fuels already today. But now, we’re evolving this flexibility up to 100% hydrogen,” Wärtsilä CEO Håkan Agnevall said.
  • “At the end of the day, when 100% hydrogen is available, our engines can run with that and, with new engines coming in, we can make the transition with the small changes that are needed for the engines,” Jukka Lehtonen, Vice-President of Technology and Product Management of Energy Business at Wärtsilä Energy said.
  • Some utilities are already exploring the potential of hydrogen — NextEra Energy, for instance, views it as a key piece of deep decarbonization efforts and has said it’s rolling out small hydrogen projects.

Path to 100% Perspective: 

Decarbonization is technically and commercially feasible with technologies that are already available at scale. These technologies include:

  • Wind and solar photovoltaic (PV) as the main sources of primary energy
  • Short-duration battery energy storage.
  • Flexible thermal balancing power plants to provide firm and dispatchable capacity.
  • Sustainable fuels used in thermal balancing power plants, forming long- term energy storage. Sustainable fuels include green hydrogen and hydrogen-based fuels, such as ammonia, methanol and synthetic meth- ane produced from renewable sources.

Shell Could Bring EU Green Hydrogen Scheme to US Shores

At-a-Glance:

Shell has just flipped the switch on the biggest green hydrogen plant in the EU, and it looks like the oil and gas giant could have a hand in fostering the renewable H2 revolution here in the US, as well. It better ramp up quickly, though. Global demand for hydrogen has tripled since the 1970s and it has nowhere to go but up. To learn more, read “Shell Could Bring EU Green Hydrogen Scheme to US Shores.”

Key Takeaways:

  • More sustainable hydrogen sources are finally beginning to emerge, including biomass, biogas, wastewater, waste plastic, and electrolysis, which refers to the process of teasing hydrogen from water with an electrical current.
  • Shell built its new green hydrogen plant at its Energy and Chemicals Park in Rheinland, Germany, with a healthy assist from the a consortium of hydrogen stakeholders and the EU’s Fuel Cells and Hydrogen Joint Undertaking.
  • Billed as “the first to use this technology at such a large scale in a refinery,” the new electrolysis plant revved up in July at a capacity of 10 megawatts. Plans are already under way to add 90 megawatts more.
  • In one especially intriguing indication of surging interest in the US, Texas has launched a study aimed at leveraging its wind and solar resources to produce green hydrogen at scale.

Path to 100% Perspective: 

In the energy sector, it is anticipated that green hydrogen will deliver 7 percent of the global energy demand by 2050. Governments will have to invest significant amounts into the infrastructure needed to develop green hydrogen, but those investments require market-ready engines that can run on the fuel once it is readily available. The energy and marine industries are on a decarbonisation journey, and the fuel flexibility of the engines powering these sectors is key to enable the transformation.

Photo by Anton Maksimov juvnsky on Unsplash

Why Hydrogen Is the Hottest Thing in Green Energy

At-a-Glance:

Solar panels and wind turbines can’t clean up everything. Making steel, for instance, calls for higher temperatures than traditional electric furnaces can deliver. That’s why plans for blunting climate change now envision a big role for hydrogen in curbing industrial emissions and for powering cars, trucks and ships. So-called green hydrogen is essentially emissions free, But meeting the ambitious plans being made for it means building a giant industry almost from scratch. To learn more, read “Why Hydrogen Is the Hottest Thing in Green Energy.” Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • Replacing fossil fuels used in furnaces that reach 1,500 degrees Celsius with hydrogen gas could make a big dent in the 20% of global carbon dioxide emissions that come from industry. And some companies are betting that hydrogen-powered fuel cells will be a better choice than batteries for heavy vehicles.
  • The European Union (EU) has set the most ambitious goal for green hydrogen: building electrolyzers that are capable of converting 40 gigawatts of renewable electricity into hydrogen by 2030.
  • China plans to have 1 million vehicles powered by hydrogen fuel cells on its roads by the end of 2030. The value of its hydrogen production could reach 1 trillion yuan ($155 billion) by 2025.
  • The U.S. had 6,500 fuel cell electric cars on the road in 2019 – the world’s largest fleet – and the Biden administration has set a goal of reducing the cost of renewable hydrogen by 80% by 2030.
  • Royal Dutch Shell Plc is leading a consortium developing a project to produce up to 10 gigawatts of green hydrogen by 2040.

Path to 100% Perspective:

Power generation is undergoing fast transformation towards cleaner energy sources due to low-cost renewables. In addition, rapidly maturing energy storage technologies, together with sector coupling, are for the first time paving a route towards zero-emission electricity generation. The missing piece of the puzzle is viable long-term storage which will be needed to provide megawatts of capacity and megawatt hours of energy during long duration seasonal conditions or unexpected renewable droughts. Hydrogen-based sustainable fuels can be stored in large quantities and for extended periods at power plants for long periods of use, enabling clean capacity to be cost effectively scaled up according to the needs of grids.

 

photo by Dippyaman Nath on Unsplash

$15 trillion global hydrogen investment needed to 2050-research

At-a-Glance:

Decarbonizing energy and other industries globally using hydrogen will require investment of almost $15 trillion between now and 2050, the Energy Transitions Commission (ETC) said in a report in April. The ETC is an international coalition of executives from the energy industry committed to achieving net zero emissions by mid-century, a goal set by the Paris climate agreement. To learn more, read $15 trillion global hydrogen investment needed to 2050-research.”

Key Takeaways:

  • Hydrogen use is forecast to grow to 500-800 million tons a year by mid-century, accounting for 15-20% of total final energy demand, from 115 million tons currently.
  • Producing green hydrogen will need zero-carbon electricity supply to increase by 30,000 terawatt hours (TWh) by 2050, on top of 90,000 TWh needed for decarbonization generally, the ETC said.
  • Around 85% of the required investment would be in electricity generation and 15% in electrolysers, hydrogen production facilities and transport and storage infrastructure.
  • Large-scale geological storage will be needed for the hydrogen produced, given the limited capacity and large costs of compressed hydrogen containers. Salt caverns will offer the lowest cost but if 5% of total annual hydrogen use in 2050 needs to be stored, it needs about 4,000 typical size salt caverns, compared with only about 100 in use for natural gas today, the report said.

Path to 100% Perspective:

As coal, diesel and legacy natural gas plants are retired to achieve ambitious decarbonization goals, the need for new dispatchable capacity is necessary for reliability and resiliency in future power systems. Short-duration and long-duration energy storage are both necessary in future power systems and they each have different roles. Long-duration storage has been the missing piece of the decarbonization puzzle, however, the use of battery storage in this application is not economical or viable.

The most economical long-duration storage is formed with green hydrogen-based future fuels, such as hydrogen, ammonia, carbon neutral methanol and methane.These fuels can be used to generate electricity in flexible power plants. Such flexible power plants provide carbon neutral firm, dispatchable capacity to the grid at any time.

 

Photo by Julian Hochgesang on Unsplash

How To Light A Fuse Under The Green Hydrogen Economy

At-a-Glance:

Generating electricity from clean hydrogen has always been elusive. But that may change in the not-so-distant future: the technological, political and environmental factors – the variables to create the hydrogen economy – are aligning. What remains a sticking point, though, is the cost factor. To learn more, read How To Light A Fuse Under The Green Hydrogen Economy.” Reading this article may require a subscription.

Key Takeaways:

  • More than 99% of the world’s hydrogen production comes from fossil fuels (called grey hydrogen). The goal is to get to green hydrogen, where solar and wind power is used to produce electricity that is put through an electrolyzer to create pure hydrogen gas.
  • In the interim, some say that a mix of green and blue (produced from natural gas using carbon capture and storage) hydrogen is a faster and more optimal solution. Currently, green hydrogen can be blended with natural gas at a rate of 15% while getting to 30% is doable.
  • The Los Angeles Department of Power and Water has agreed with Utah authorities to buy much of the output of the Intermountain Power Project which will generate hydrogen from wind and solar.
    • The plant will convert to a natural-gas-combined-cycle facility that can burn hydrogen as a fuel.
    • By 2025, 30% of electricity will come from hydrogen and by 2045, all of it will.
  • In its Hydrogen Economy Outlook, Bloomberg New Energy Finance says that green hydrogen could cut global greenhouse gases by 34% by 2050.
  • “Hydrogen has potential to become the fuel that powers a clean economy,” writes Kobad Bhavnagri, lead author of the Bloomberg report. “If the clean hydrogen industry can scale up, many of the hard-to-abate sectors could be decarbonized using hydrogen, at surprisingly low costs.”

Path to 100% Perspective:

Hydrogen and synthetic fuels, such as hydrogen-based renewable synthetic methane, promise to be an important piece of the decarbonization puzzle. Creating such a flexible power system would accelerate the global transition to 100% clean energy.

 

Photo by Praveen kumar Mathivanan on Unsplash

California wastes its extra solar, wind energy. Could hydrogen be the storage key?

At-a-Glance:

No amount of solar panels and wind turbines alone will be enough for California to reach its goal of a clean electrical grid unless the state can solve its energy storage problem. The state already generates an abundance of energy from wind and solar farms, particularly during the sunny and blustery spring and early summer months. But it loses much of that energy because it has nowhere to store it, and unlike fossil fuels, the sun and wind are not dispatchable, and therefore are unable to be called on to generate power 24 hours a day. Utilities must rely on gas-fired power plants to keep up with California’s energy demands during peak demand periods. To learn more, read California wastes its extra solar, wind energy. Could hydrogen be the storage key? Reading this article may require a subscription.

Key Takeaways:

  • Some experts and legislators say the missing puzzle piece could be hydrogen, the most abundant element in the universe, which can be used as a zero-emission fuel for power plants, vehicles and machinery.
  • “I would say it’s almost the missing piece of the puzzle,” said Jussi Heikkinen, Director of Growth and Development at Wärtsilä Energy, a Finnish technology company that has built battery storage systems in California. “We don’t need to get rid of the power plants, but we need to get rid of fossil fuels.”
  • State Senator Nancy Skinner, D-Berkeley, is carrying a bill, SB18, that specifies the state’s climate and electrical grid plans include “green hydrogen,” or hydrogen gas that is produced using electricity from renewable sources.
  • According to Jack Brouwer, director of the National Fuel Cell Research Center, hydrogen is more effective for longer storage than batteries because it doesn’t lose energy over time and can be stored underground easily and cheaply.
  • Hydrogen advocates say that California ultimately needs a mix of hydrogen and batteries to reduce carbon emissions.

Path to 100% Perspective:

Investing in green hydrogen will be important as California looks to decarbonize its energy system. The state can turn this into a win-win by harnessing the excess power generated by existing wind and solar farms to produce hydrogen. The hydrogen can be stored and turned back into electricity using flexible thermal assets. Policies that enable rapid reductions in fossil fuel use and rapid increases in renewable generation in the electricity sector are a valuable piece to accelerating the decarbonization process. Legislation should steer electricity-sector decisions about investments, infrastructure and technology toward decisions that quickly reduce greenhouse gas emissions and pave the way for a 100% renewable energy future

 

 

Photo by Mike Fox on Unsplash

California’s pathway to 100% clean electricity begins to take shape, but reliability concerns persist

At-a-Glance

California’s energy agencies are taking a first stab at assessing possible pathways to the state’s ambitious goal of achieving 100% renewable and zero-carbon electricity by 2045, but concerns about system reliability — especially in light of the rolling blackouts — continue to plague regulators. The California Public Utilities Commission (CPUC), California Energy Commission (CEC) and California Air Resources Board (CARB) released a draft report on getting to a 2045 clean electricity portfolio, which indicated the goal is technically achievable. To learn more, read “California’s pathway to 100% clean electricity begins to take shape, but reliability concerns persist.”

Key Takeaways

  • The report presents important initial insights into potential paths for the electric sector, Mary Nichols, CARB chair, said at the workshop, adding that “the initial work highlights the enormous challenge ahead, requiring a complete transformation in the type of electricity that Californians consume.”
  • California’s carbon goals are part of legislation passed by the state in 2018, called Senate Bill 100, which calls for 100% of electric retail sales in the state to come from renewable energy and zero-carbon resources by the end of 2045.
  • The bill also required the three energy agencies to create a report evaluating the policy and follow it up with updates at least every four years. The agencies intend to submit a final version of the initial report early next year.
  • Based on this analysis, the report concludes that achieving the 100% clean electricity goal is technically achievable, and could cost around 6% more than the baseline 60% Renewable Portfolio Standard (RPS) future by 2045, although that could change if renewables continue to decline in cost at a faster rate than anticipated by the models.

Path to 100% Perspective

A place where the transition to renewables has progressed quite far already is California. The lessons learned along the way have been plentiful, but powerful nonetheless. The record-breaking heat wave that swept across the western part of the country and caused a series of blackouts in the Golden State, offered additional modelling opportunities to demonstrate the most effective mix of energy to accommodate any extreme weather situation during the transition, and to meet clean power mandates. The big challenge facing California and the rest of the world is how to integrate renewables into the grid while building security of supply and a sustainable power system with an affordable plan for everyone involved.

 

 

Photo by Matthew Hamilton on Unsplash

Hydrogen era no longer a distant mirage

At-a-Glance

For decades oil producers have stored fossil fuels in manmade caverns carved into naturally occurring salt domes, deep below the surface of the U.S. Gulf Coast. Now, this hydrogen infrastructure will form the center of several marquee initiatives launched in 2020 to unlock the much broader potential of the most abundant element in the universe. To learn more, read “Hydrogen era no longer a distant mirage.”

Key Takeaways

  • Hydrogen will power fuel cells to drive passenger vehicles, heavy-duty trucks, ships, airplanes, as well as heat and light buildings. It will enable levels of decarbonization unimaginable using only renewable resources and battery storage.
  • With limited demand and no real scale to date, green hydrogen sourced from renewable energy can cost four times as much as other options, according to the International Energy Agency.
  • “A truly hydrogen-based economy … appears out of reach, at least before 2030,” S&P Global Ratings said in a report released in November. “Energy transitions typically take decades.”

Path to 100% Perspective

Green hydrogen makes up less than 0.1% of the world’s 70 million-metric-ton annual hydrogen supply, according to the Green Hydrogen Coalition, a California-based nonprofit advocacy group. “Gray” hydrogen, produced from natural gas using high-temperature steam methane reforming, and “brown” hydrogen, made by gasifying coal, account for almost all hydrogen in use today. The chief customers are oil refineries, chemical plants and industrial manufacturers such as steel and cement makers. “Blue hydrogen,” a lower-carbon variant, also uses fossil fuels as a source but offsets emissions with carbon capture and storage. Blue and green hydrogen are not widely used at this time.

 

Photo by Isravel Raj on Unsplash

Q&A Series: Ricardo González Romero Looks at Renewable Energy Opportunities Post-Pandemic

Ricardo González Romero is a General Manager at Anabática Renovables in Santiago, Chile.  He’s a subject matter expert on renewable energy serving in several different roles in the energy sector. He is also a guest professor at three different universities throughout the Latin American region.

Question:  Please describe yourself and your work. 

Ricardo: I am a General Manager at Anabática Renovables in Santiago, Chile, where my background and expertise is in consultancy, management, team restructuring, renewable energy support, along with greenfield wind and solar project development. Anabática Renovables provides financial and investment advisory services, reliable third-party assessment, and independent technical assessment for companies seeking to participate in Latin America´s wind and solar energy market.

My specialties within the renewable energy sector are in valuation of assets; mergers and acquisitions; project evaluation; management project; wind energy analysis; business development; and energy technology assessment. In addition to my current position, I serve as a guest professor at the Universidad Tecnológica Nacional in Argentina; the Universidad de Chile, and the Universidad de Zaragoza in Spain.

Q: With your extensive experience in the region and work with Anabática Renovables, could you please describe the current state of the renewable energy sector in Chile?

Ricardo: Well, we are still growing up. Even though 2020 was a terrible year, our business has experienced interesting growth and next year looks to be going the same. Decarbonization, green hydrogen, investment opportunities, batteries, and more make the position we occupy interesting for all of us who are in it.

Q: Why is investing in renewable energy so important for Chile? And what sectors offer the most promise?

Ricardo: That is difficult to know in the middle of this pandemic! Chile needs to change. It needs more and more green energy to face a greener future and make the national industry more competitive and clean. It means we have to clean up our electrical matrix. We also need to pursue new projects, while the country needs to offer this possibility in a stable market with clear rules.

Q: Why do you consider the need to make a good return on an investment a main barrier or challenge for Chile on its path to clean and affordable energy?

Ricardo: In general, the world does not offer too many opportunities to invest (safely, on a regular basis). In our business, there is still a lot of competition and Chile, due to its economic conception, does not facilitate a return on investment as it happens in many other countries. It is necessary to be extremely cautious with the economic-financial projections, especially with regard to the marginal cost.

Q: Finally, based on your experience and work at Anabática Renovables, how can Chile lead the way towards 100 percent renewable energy? And what progress do you foresee for the region in the coming years?

Ricardo: Working hard. Making good estimations, considering externalities, and paying attention to local communities. We need to think in terms of renewables and batteries.

 

Photo by Amanda Hortiz on Unsplash

New Energy Outlook Projects Massive Energy Sector Shift Through 2050

At-a-Glance:

BloombergNEF (BNEF) published its New Energy Outlook 2020 (NEO) in October. The NEO projects the evolution of the global energy system over the next 30 years. This report is widely utilized by planners, strategic thinkers, and investors in developing long-term forecasts and plans. One of the NEO’s most notable projections is that the sharp drop in energy demand from the Covid-19 pandemic will remove about 2.5 years’ worth of energy sector emissions between now and 2050. To learn more, read New Energy Outlook Projects Massive Energy Sector Shift Through 2050.” Reading this article may require a subscription.

Key Takeaways:

Other notables from the report:

  • Electric vehicles (EVs) reach upfront price parity with Internal Combustion Engine (ICE) vehicles before 2025.
  • Gas is the only fossil fuel to grow continuously through the outlook, gaining 0.5% year-on-year to 2050.
  • Coal demand peaked in 2018 and collapses to 18% of primary energy by mid-century, from 26% today.
  • In the NEO Climate Scenario, the clean electricity and hydrogen pathway requires 100,000 terawatt-hours (TWh) of power generation by 2050. This power system is 6-8 times bigger than today’s and generates five times the electricity.
  • Green hydrogen provides just under a quarter of total final energy in 2050 under the Climate Scenario.
  • Reducing emissions well below two degrees under the clean electricity and green hydrogen pathway requires between $78 trillion and $130 trillion of new investment between now and 2050.

Path to 100% Perspective:

The dramatic fall in once-expensive renewable and flexible capacity costs has transformed energy investment over the last decade and the pace of change in accelerating. The cost of offshore wind, for example, has fallen by 63% since 2012. With a renewed focus on future-proofing their business models, utilities have increased renewable energy investments, taking advantage of the certainty that clean energy brings to the balance sheet. In effect, adopting renewable energy, coupled with flexible generation and storage for system balancing, is akin to purchasing unlimited power up-front, as opposed to placing bets on fluctuating oil prices and exposure to narrowing environmental regulation.

 

Photo by American Public Power Association on Unsplash