How To Light A Fuse Under The Green Hydrogen Economy

At-a-Glance:

Generating electricity from clean hydrogen has always been elusive. But that may change in the not-so-distant future: the technological, political and environmental factors – the variables to create the hydrogen economy – are aligning. What remains a sticking point, though, is the cost factor. To learn more, read How To Light A Fuse Under The Green Hydrogen Economy.” Reading this article may require a subscription.

Key Takeaways:

  • More than 99% of the world’s hydrogen production comes from fossil fuels (called grey hydrogen). The goal is to get to green hydrogen, where solar and wind power is used to produce electricity that is put through an electrolyzer to create pure hydrogen gas.
  • In the interim, some say that a mix of green and blue (produced from natural gas using carbon capture and storage) hydrogen is a faster and more optimal solution. Currently, green hydrogen can be blended with natural gas at a rate of 15% while getting to 30% is doable.
  • The Los Angeles Department of Power and Water has agreed with Utah authorities to buy much of the output of the Intermountain Power Project which will generate hydrogen from wind and solar.
    • The plant will convert to a natural-gas-combined-cycle facility that can burn hydrogen as a fuel.
    • By 2025, 30% of electricity will come from hydrogen and by 2045, all of it will.
  • In its Hydrogen Economy Outlook, Bloomberg New Energy Finance says that green hydrogen could cut global greenhouse gases by 34% by 2050.
  • “Hydrogen has potential to become the fuel that powers a clean economy,” writes Kobad Bhavnagri, lead author of the Bloomberg report. “If the clean hydrogen industry can scale up, many of the hard-to-abate sectors could be decarbonized using hydrogen, at surprisingly low costs.”

Path to 100% Perspective:

Hydrogen and synthetic fuels, such as hydrogen-based renewable synthetic methane, promise to be an important piece of the decarbonization puzzle. Creating such a flexible power system would accelerate the global transition to 100% clean energy.

 

Photo by Praveen kumar Mathivanan on Unsplash

How to Build a Green Hydrogen Economy for the US West

At-a-Glance:

Out in Utah, a coal-fired power plant supplying electricity to Los Angeles is being outfitted to eventually be able to run on hydrogen, created via electrolysis with wind and solar power and stored in massive underground caverns for use when that clean energy isn’t available for the grid. This billion-dollar-plus project could eventually expand to more renewable-powered electrolyzers, storage and generators to supply dispatchable power for the greater Western U.S. grid. It could also grow to include hydrogen pipelines to augment and replace the natural gas used for heating and industry or supply hydrogen fuel-cell vehicle fleets across the region. To learn more, read “How to Build a Green Hydrogen Economy for the US West.”

Key Takeaways:

  • The Western Green Hydrogen Initiative (WGHI) is a group representing 11 Western states, two Canadian provinces and key green hydrogen industry partners. WGHI launched in November to align state and federal efforts to create a regional green hydrogen strategy including a large-scale, long-duration renewable energy storage regional reserve.
  • At the heart of this effort are two projects in central Utah. The first is the Intermountain Power Project, a coal-fired power plant operated by the state-owned Intermountain Power Agency, which supplies municipal utilities in Utah and California, including the Los Angeles Department of Water and Power. By 2025, Intermountain will be converted to turbines to supply 840 megawatts of power using natural gas blended with 30 percent hydrogen, a proportion that will rise to 100 percent hydrogen over the coming decades.
  • The second project is the Advanced Clean Energy Storage (ACES) project, which will invest roughly $1 billion to develop a nearby underground salt dome to store compressed hydrogen. ACES will provide up to 150,000 megawatt-hours of energy storage capacity, a scale that dwarfs the lithium-ion battery capacity being installed in California and across the Intermountain West.

Path to 100% Perspective:

Whether green hydrogen can cost-effectively replace natural gas for its myriad current uses will depend largely on the carbon-reduction drivers involved. But it will also require a redefinition of what it’s doing for the broader electrical system, said Jussi Heikkinen, Director of Growth and Development for the Americas division of Wärtsilä Energy Business. Wärtsilä’s engines power about one-third of the world’s cargo ships and a good deal of electricity generation, he said. It’s been making strides in converting its engines to run on 100 percent hydrogen and is developing hydrogen generation projects in the U.S. and Europe. In a study focused on California, Wärtsilä showed that zero-carbon hydrogen, or methane generated with carbon-capture technologies, to fuel power plants is a much less expensive alternative to building the battery capacity needed to cover the final 5 percent to 10 percent of grid power needed to reach its 100 percent carbon-free energy goals. “When there are huge load peaks, cloud cover or unusual weather, these plants kick in, and allow you to build a much smaller battery storage fleet,” he said.

 

Photo by Peter De Lucia on Unsplash