CEOs outline 3 trends hitting electricity

At-a-Glance:

Major power companies held earnings calls in recent weeks to share their focus on issues such as expanding renewables and the role of hydrogen under a national push for 100 percent clean electricity. Additionally, CEO’s discussed how the COVID-19 pandemic is threatening to delay solar projects and defer grid maintenance. To learn more, read “CEOs outline 3 trends hitting electricity.” Reading this article may require a subscription.

Key Takeaways:

Here are the issues that major electric companies are focused on as 2020 winds down:

  • One effect of the coronavirus pandemic may impact renewable energy development. NRG Energy Inc. CEO Mauricio Gutierrez said a chunk of the pending purchased power in Texas may be delayed six to eight months because of supply chain and financing issues related to the virus.
  • CenterPoint Energy Inc. CEO David Lesar said the company will work on renewable natural gas and hydrogen renewables in Minnesota plus possible new transmission infrastructure to connect to renewable sources in Texas.
  • CEO John Ketchum of NextEra Energy Resources LLC said hydrogen will come into play if federal policy accelerates a zero-carbon goal by 2035.
  • Vistra Corp CEO Curt Morgan said Vistra has “a portfolio of highly efficient, low-emitting natural gas assets that can provide reliable, dispatchable power and complement the intermittent nature of renewable resources.” He explained a diverse portfolio enables renewable products that can ensure reliability and an affordable price. “Every reputable and objective study on the changing power generation landscape has natural gas playing a significant role for several years to come, especially as we electrify the economy,” Morgan said.

Path to 100% Perspective:

These are exciting times as the renewable energy future is a focus for so many organizations and governments around the world. Emerging technologies are moving closer to reality, which makes ambitious energy goals more realistic and the path to 100 percent renewable energy is now within reach. The big challenge facing power generators around the world is how to integrate renewables into the grid while building security of supply and a sustainable power system with an affordable plan for everyone involved. Renewable carbon neutral fuels such as hydrogen and synthetic methane are being explored as solutions for sustainable and reliable power systems. Curtailed renewable electricity is used in the process with water to produce Hydrogen, and carbon is captured from air to produce synthetic methane with hydrogen. These fuels are used in flexible power plants to provide a long term energy storage for seasonal and weather management needs.

 

Photo by Priscilla Du Preez on Unsplash

Green Hydrogen in Natural Gas Pipelines: Decarbonization Solution or Pipe Dream?

At-a-Glance:

Can carbon-free hydrogen augment, or even replace, the fossil natural gas running through pipelines to fuel furnaces, boilers, stoves and other building applications today? Or will the effort get bogged down in challenges related to pipeline safety and upgrade costs, loss of energy density, the long-term cost discrepancies compared to electrifying natural-gas-fired heat and appliances in buildings, or the pressure to direct green hydrogen to hard-to-decarbonize sectors? Natural-gas utilities around the world are seeking real-world answers to these kinds of questions. To learn more, read “Green Hydrogen in Natural Gas Pipelines: Decarbonization Solution or Pipe Dream?”

Key Takeaways:

  • In the U.S., the HyBlend project involving NREL and five other DOE labs intends to examine the long-term effects of hydrogen at different blends on different pipeline materials and create publicly available models for industry use. This kind of research will help determine how much it will cost to upgrade existing pipeline networks to make the shift.
  • “Hydrogen also burns very differently than methane”, said Jussi Heikkinen, the Americas Director of Growth and Development for Wärtsilä Energy and Path to 100% community expert, which is investing in engines that can run on 100 percent hydrogen. “It burns almost as an explosion. It’s a blast, and then it’s done. That’s good for efficient conversion of gas into heat, but it also brings safety and engineering challenges,” he said.
  • Making green hydrogen using carbon-free electricity also costs four to six times more than making hydrogen from fossil fuels. Those costs are expected to fall with advances in electrolysis efficiency, lower costs of renewable energy to power them, and economies of scale from the industrial hubs being built around the world.

Path to 100% Perspective:

When utilities go beyond 25 percent hydrogen in the fuel, in most places in the world, they are no longer able to use the same equipment. Electronics, for example, must be explosion-proof. There should be no sparks because hydrogen ignites with almost any air-to-fuel ratio.

Hydrogen is also about three times less energy-dense than methane. That means that as the ratio of hydrogen rises, the volume of energy being delivered through the same pipelines decreases.

Photo by American Public Power Association on Unsplash

How to Build a Green Hydrogen Economy for the US West

At-a-Glance:

Out in Utah, a coal-fired power plant supplying electricity to Los Angeles is being outfitted to eventually be able to run on hydrogen, created via electrolysis with wind and solar power and stored in massive underground caverns for use when that clean energy isn’t available for the grid. This billion-dollar-plus project could eventually expand to more renewable-powered electrolyzers, storage and generators to supply dispatchable power for the greater Western U.S. grid. It could also grow to include hydrogen pipelines to augment and replace the natural gas used for heating and industry or supply hydrogen fuel-cell vehicle fleets across the region. To learn more, read “How to Build a Green Hydrogen Economy for the US West.”

Key Takeaways:

  • The Western Green Hydrogen Initiative (WGHI) is a group representing 11 Western states, two Canadian provinces and key green hydrogen industry partners. WGHI launched in November to align state and federal efforts to create a regional green hydrogen strategy including a large-scale, long-duration renewable energy storage regional reserve.
  • At the heart of this effort are two projects in central Utah. The first is the Intermountain Power Project, a coal-fired power plant operated by the state-owned Intermountain Power Agency, which supplies municipal utilities in Utah and California, including the Los Angeles Department of Water and Power. By 2025, Intermountain will be converted to turbines to supply 840 megawatts of power using natural gas blended with 30 percent hydrogen, a proportion that will rise to 100 percent hydrogen over the coming decades.
  • The second project is the Advanced Clean Energy Storage (ACES) project, which will invest roughly $1 billion to develop a nearby underground salt dome to store compressed hydrogen. ACES will provide up to 150,000 megawatt-hours of energy storage capacity, a scale that dwarfs the lithium-ion battery capacity being installed in California and across the Intermountain West.

Path to 100% Perspective:

Whether green hydrogen can cost-effectively replace natural gas for its myriad current uses will depend largely on the carbon-reduction drivers involved. But it will also require a redefinition of what it’s doing for the broader electrical system, said Jussi Heikkinen, Director of Growth and Development for the Americas division of Wärtsilä Energy Business. Wärtsilä’s engines power about one-third of the world’s cargo ships and a good deal of electricity generation, he said. It’s been making strides in converting its engines to run on 100 percent hydrogen and is developing hydrogen generation projects in the U.S. and Europe. In a study focused on California, Wärtsilä showed that zero-carbon hydrogen, or methane generated with carbon-capture technologies, to fuel power plants is a much less expensive alternative to building the battery capacity needed to cover the final 5 percent to 10 percent of grid power needed to reach its 100 percent carbon-free energy goals. “When there are huge load peaks, cloud cover or unusual weather, these plants kick in, and allow you to build a much smaller battery storage fleet,” he said.

 

Photo by Peter De Lucia on Unsplash