Biden Commits U.S. To Halving Greenhouse Gas Emissions By 2030

At-a-Glance:

President Joe Biden has committed to cutting U.S. greenhouse gas emissions by at least 50% by 2030 compared with 2005 levels. The ambition is a significant advance on the previous target, set by President Barack Obama, of a 26-28% cut from 2005 levels. But it stops short of doubling that target. Now, climate leaders are waiting to see how the U.S. proposes that that target will be achieved.To learn more, read “Biden Commits U.S. To Halving Greenhouse Gas Emissions By 2030.” Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • The White House said in January that the president’s plan would put the country on a path to a carbon pollution-free power sector by 2035.
  • Other countries have recently ramped up their climate ambitions. On April 21, the European Union announced that it would commit to further emissions cuts by 2030 and ensure its 27 member nations achieve carbon neutral status by 2050.
  • The U.K. has set an even more ambitious target, committing to a 78% cut in emissions by 2035.
  • U.N. Secretary-General Antonio Guterres has called for all nations to submit ambitious new climate action plans ahead of the COP26 climate summit, scheduled for November.

Path to 100% Perspective:

Countless governments have set ambitious carbon neutral targets, but these are yet to be matched by realistic strategies and firm action plans. The path to decarbonization can only be accelerated by modelling power systems and developing strategic plans to futureproof the path to 100% renewable energy using technology that is available today. But the path to net zero will not materialize through incremental steps and organic change. An unplanned, step-by-step journey risks energy systems being burdened with technologies that do not support the transition to 100% renewable energy.

Governments and utilities must adopt clear strategies to drive action, developed in collaboration with all sectors of the economy and setting clear milestones for transformation.

 

Photo by René DeAnda on Unsplash

Switching to renewable energy is sometimes dirty. Tech like blockchain can help

At-a-Glance:

The worldwide push to achieve net-zero carbon emissions by 2050 will require advances in green technologies – particularly tech associated with renewable energy – but simply waiting for future tools to emerge isn’t a viable solution to climate change. To learn more, read Switching to renewable energy is sometimes dirty. Tech like blockchain can help.”   Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • According to McKinsey, electricity will occupy 30% of the global demand for power by 2050 – up from 19% today. The International Energy Agency expects renewables to generate 80% of global electricity demand within the next decade, as the cost of renewable generation plummets below the cost of fossil fuels.
  • “Clearly, there’s a great danger that we simply replace a hydrocarbon-based economy…with a metal economy,” says Robert Lee, professor of law at the University of Birmingham in the U.K., referring to the metals that are required to make batteries, such as lithium. Mining those metals is a polluting process itself, and properly disposing of batteries at the end of their shelf life is a looming issue.
  • Digital technologies can help address the challenges involved in switching to renewable energy and electricity. For example, the European Union passed legislation requiring battery manufacturers to stamp battery units with a digital “passport” tag so the battery can be traced through its lifetime.
  • Energy saved by efficiencies introduced through digitalizing will offset the energy consumed by digitalization. This would come through actions like energy suppliers using remote sensors and AI oversight to monitor power demand and distribute electricity efficiently.

Path to 100% Perspective:

The average estimated life of a Lithium-Ion battery is about two to three years or 300 to 500 charge cycles, whichever happens first. Lower costs and increased spending on renewables are driving deeper penetration of renewable energy around the globe. Renewables will certainly play an integral role in powering mining operations because of the benefits they offer in terms of cost and sustainability. Economically it makes sense. The levelled cost of electricity (LCOE) is lower than ever, and renewables are becoming increasingly cost-effective as organizations seek efficiencies and breakthroughs.

 

 

Photo by Launchpresso on Unsplash

What does negative net zero carbon mean?

At-a-Glance:

Negative net-zero carbon. The phrase sounds redundant or oxymoronic. But it is a real thing. You can have less than net-zero carbon emissions if you capture and use emissions that otherwise would be released as greenhouse gas into the atmosphere. To learn more, read “What does negative net zero carbon mean?”

Key Takeaways:

  • Renewable natural gas (RNG), or biogas, is derived from organic waste material. Biogas can be captured and used as fuel in place of traditional natural gas.
  • According to a University of California Davis study, there is so much organic waste available in California that more than 20% of the state’s residential gas needs could be met with RNG.
  • California Air Resources Board (CARB) data shows that the average “carbon intensity” of all renewable natural gas vehicle fuel in the state’s Low Carbon Fuel Standard (LCFS) program was negative for the first time in program history.
  • RNG made up nearly 90% of all natural gas vehicle fuel in the low carbon fuel program and consumed in California in the first half of 2020, up from around 77% in 2019, according to CARB data.
  • According to an EPA study, if you capture all the methane coming off of RNG capture potential areas, you could run about 200,000 trucks on renewable natural gas every year.

Path to 100% Perspective:

The role of natural gas in power generation is increasing as it is being more widely utilized to run power plants that are integrated with intermittent wind and solar systems. As the share of wind and solar capacity increases and the net load to thermal plants decreases, gas power plants can also provide peaking to system balancing. Renewable natural gas can be leveraged as a fuel source to replace fossil-fuel based natural gas, thus moving the world one step closer to decarbonization and a 100% renewable energy future.

 

Photo by Scott Rodgerson on Unsplash

Yes, America can achieve net zero carbon emissions by 2050. Here’s how.

At-a-Glance:

The loss of life and economic costs stemming from the recent crisis in Texas have demonstrated that electric power is a necessity, not an ordinary commodity. While fact finding has just begun, it’s clear that policy makers must take a hard look at the economic rules and incentives governing the power sector and assess the resilience of a vast array of critical infrastructure. To learn more read,  Yes, America can achieve net zero carbon emissions by 2050. Here’s how.”

Key Takeaways:

3 areas for collaboration:

Current incentives create restraints on rapid change, but can overcome to meet climate goals with effective public-private collaboration in three areas:

  • Support for innovation. The federal government should invest big to help new technologies make the leap from laboratory to marketplace.
  • Inclusive policies. Indulging preferences for some solutions over others might be tenable if there was plenty of time, but getting there will require a massive increase of renewable energy; breakthroughs in energy storage technologies, such as batteries, and in new energy carriers, such as hydrogen.
  • The ability to build big and build fast. To tackle our interrelated climate and energy challenges, America must rediscover the moonshot ambition and collective sense of urgency that allowed us to put a man on the moon in less than 10 years. A century earlier we built the transcontinental railroad in just six years.

Path to 100% Perspective:

As each government and organizational leader considers the landscape of the decade of consequence for the global climate, a clear line of sight to achieve decarbonization has been set by science. 3,000 GW of installed renewable capacity is required by 2030 to achieve the lower Paris target of 2°C5. Fatih Birol, Executive Director of the IEA, said in June 2020 that world leaders have six months to put policies in place to prevent a rebound in emissions that could put that target permanently out of reach. Leaders now face a clear choice: either be shaped by the inherent shocks of a worsening climate emergency or take action to shape the energy system around the needs and impact of a net-zero future.

 

Photo by Luke Stackpoole on Unsplash

Why ‘Carbon Neutral’ Is the New Climate Change Mantra

At-a-Glance:

Becoming carbon neutral — also known as climate-neutral or net zero — is now a legal requirement in some countries, while European authorities are adopting legislation to become the first net zero continent. Even oil companies are getting in on the act. Buildings, airlines and events have also made the pledge, while investments groups managing almost $5 trillion of assets have committed to having carbon-neutral portfolios by 2050.To learn more, read Why ‘Carbon Neutral’ Is the New Climate Change Mantra.” Reading this article may require a subscription.

Key Takeaways:

  • What is carbon neutral? It means cutting emissions to the very limit and compensating for what can’t be eliminated.
  • What are carbon offset credits? Developed by the United Nations and non-profit groups, these let the buyers emit a specified amount of greenhouse gas, which is offset by using the money raised to fund carbon-reduction projects such as reforestation.
  • Who’s trying to be carbon neutral? Dozens of countries have committed to go net zero, or at least outperform carbon-reduction targets set out in the landmark 2015 Paris Agreement on climate change.
  • What’s driving this? CO2 pollution is still rising — 2019 was another record — and is unlikely to peak before 2040, driven by growing use of fossil fuels, says the International Energy Agency.
  • How will the goals be reached? To get anywhere close to net zero by 2050, the world must invest $2.4 trillion in clean energy every year through 2035, according to the UN’s Intergovernmental Panel on Climate Change. Much will ride on technologies that on the grand scale required are as yet unproven, including carbon capture, using hydrogen as fuel and removing carbon dioxide from the atmosphere.

Path to 100% Perspective:

Understanding the evolving terminology is useful, but embracing a plan that is possible, practical and affordable will combine knowledge with measurable results. As organizations add renewable energy to their net zero goals, it is important to develop a power system with flexibility, reliability and sustainability in mind. Renewable energy can actually generate renewable fuels that can be used to create a sustainable grid with a path to faster decarbonization.

 

Photo by Science in HD on Unsplash

This is How the Government Can Ramp Up Climate Tech Investment

At-a-Glance:

The last couple of weeks have brought a steady stream of new pledges to achieve net-zero carbon emissions within the next handful of decades. And yet a report released in September, by the International Energy Agency, estimated that roughly half of the technologies that will be needed to get to net zero globally by 2050 aren’t even commercially available yet. The secret of deep decarbonization is that it won’t happen by just plugging into a wind farm or buying carbon offsets in a tropical forest. Without new technologies, it will be impossible to rein in emissions from the most-carbon intensive sectors of the economy such as heavy industry and long-distance transport. To learn more, read “This is How the Government Can Ramp Up Climate Tech Investment.”  (Reading this article requires a subscription.)

Key Takeaways:

  • Physicist Varun Sivaram sees the first step is to establish a National Energy Innovation Mission and create a White House Task Force to coordinate spending across different federal agencies. Sivaram and his team include a draft executive order in the report so the next administration can just plug and play.
  • Step two is to ramp up spending on energy innovation research and development from the current rate of about $9 billion a year to at least $25 billion by 2022.
  • The plan breaks down decarbonization into 10 categories where breakthroughs must occur. These include clean fuels, clean agricultural systems, carbon capture use and sequestration, and carbon removal.
  • One of the most persuasive moments in the report comes in a chart showing the disconnect between the sectors in the U.S. responsible for emissions and the corresponding research budget through the Department of Energy. Electricity produces 27% of emissions but gets 47% of the research dollars, while industry produces 22% of the emissions but receives 6% of the innovation funding.
  • The proposed budget would remedy that by adding money to underfunded areas, such as tripling the money for carbon capture from $115 million a year to $300 million.

Path to 100% Perspective:

Government economic stimulus must go beyond merely boosting the amount of renewables, but should also support system flexibility. We don’t just need wind turbines and solar panels but also energy storage, optimization platforms and flexible power plant technology to balance the influx of renewables. Energy storage and digital optimization is already becoming essential as we increase the amount of renewables on the grid to manage the volatility of wind and solar. Flexible gas engine technology is ready to use future fuels such as green hydrogen and synthetic methane derived from renewable energy sources (Power-to-X). These will help to balance out the longer-term needs of the grid, that can’t be matched by shorter duration energy storage.

 

Photo: Luke Sharrett/Bloomberg