Wärtsilä to provide O&M services for 130MW power plant in Senegal

At-a-Glance: 

Wärtsilä recently signed a 10-year service agreement with Mailicounda Power SAS of Senegal in order to strengthen the power plant and secure supply to Senegal’s grid. The $167 million Malicounda Power project is being developed by a consortium of partners, including Africa50, Senegalese utility Senelec and local developer Melec PowerGen. To learn more read, “Wärtsilä to provide O&M services for 130MW power plant in Senegal.

Key Takeaways:

  • Malicounda will deploy the Flexicycle power plant which will operate with seven Wärtsilä 50 engines. The plant will be able to operate in simple cycle or combined cycle modes.
    • Wärtsilä will also provide scheduled maintenance and spare parts, as well as heat rate and power output guarantees after major overhauls.
  • Wärtsilä will provide Malicounda Power SAS with remote support from its Expertise Centre, supported by a digital predictive maintenance tool using artificial intelligence and advanced diagnostics to monitor equipment and systems in real-time.
  • The plant is expected to increase generating capacity in Senegal by about 17%, while reducing generation costs by about 14%.

Path to 100% Perspective:

Wärtsila’s project serves to bolster ambitious decarbonization goals with its new technologies and equipment that make power plants more efficient, flexible, and environmentally-friendly. Wärtsilä uses AI and equipment expertise to enhance the safety, reliability, and efficiency of power equipment and systems. AI and machine learning will play increasingly important roles in future power generation, especially as more communities and organizations come to rely on smart grids and renewable fuels for their electricity needs.

Wärtsilä has set a goal of 2030 to be carbon neutral in its own operations and to provide a product portfolio which will be ready for zero carbon fuels. These are the examples that will encourage other businesses and industries to embark on their own decarbonization journeys.

 

Green hydrogen: The zero-carbon seasonal energy storage solution

At-a-Glance:

Founder and former executive director of the California Energy Storage Alliance (CESA), Janice Lin, explains the process of developing California’s 100% renewable portfolios and modelling California’s clean energy storage needs. During the process, Lin discovered the viability of green hydrogen as the solution to balance the grid. In 2019, she founded the Green Hydrogen Coalition (GHC) to research how hydrogen can offer the large-scale storage capacity and flexible discharge horizons to support a global clean energy future. To learn more, read “Green hydrogen: The zero-carbon seasonal energy storage solution.”

Key Takeaways:

  • CESA deduced that of the commercially available solutions, green hydrogen was the only low-carbon, potentially economically viable option to support seasonal, dispatchable, scalable energy storage for the grid.
  • Hydrogen gas can power the grid via multiple pathways, either through conversion in a fuel cell or by direct combustion in a gas turbine. Many gas turbines are already able to combust a blend of natural gas and hydrogen, and several leading manufacturers are developing new gas turbines that can consume 100% hydrogen gas.
  • By repurposing existing energy infrastructure, green hydrogen has the potential to make the clean energy transition affordable, reliable and scalable.
  • CESA changed their definition of energy storage to include hydrogen storage technologies, including purpose-built storage facilities as well as pipelines.
  • Green hydrogen is the ideal seasonal energy storage medium:
    • Hydrogen is abundant, offers separate power and energy scaling, can be produced from renewable energy and can be stored at scale.
  • Although lithium-ion energy storage is an important part of the toolkit, there is just not enough lithium to support the needs of a sustainable and reliable clean energy future.
  • Only abundant, available hydrogen can offer the large-scale storage capacity and flexible discharge horizons to support a global clean energy future.

Path to 100% Perspective:

Green hydrogen is produced with water, an electrolyzer and electricity generated from renewable energy. Hydrogen offers interesting possibilities for decarbonized power generation. In a power system that incorporates renewables and battery storage, for example, some of the excess renewable energy could be used to produce hydrogen that could be used in a power plant to balance the power system at times when cloudy and calm weather may reduce the output of solar and wind power plants. Hydrogen could be produced when electricity need is low, stored relatively cheaply, and used when needed. This would lower the overall cost of the clean electricity. Incorporating hydrogen in this way would add a long-term energy storage solution to the short-term storage solution provided by batteries.

 

Photo by Bekky Bekks on Unsplash