Renewables alone won’t satisfy California’s clean energy ambitions


Carbon capture and storage (CCS) would provide California with 15 percent of the emissions reductions necessary to meet its goal of a carbon-neutral economy in 2045, and it would save the state $750 million in costs for solar generation and grid-scale batteries, according to a new study. The report was released in October by the non-profit Energy Futures Initiative (EFI) and Stanford University. According to the report, 20 million tons of carbon dioxide emitted by 76 large industrial and power-generating emitters in California, could be extracted and stored underground at a profit. To learn more, read “Renewables alone won’t satisfy California’s clean energy ambitions.”

Key Takeaways:

  • Clean firm power available whenever needed and most likely to come from natural gas, is necessary to smooth out the peaks and valleys that are inherent to wind, solar, and hydroelectric generation, according to EFI.
  • Transportation accounts for 40 percent of California’s greenhouse gas emissions. The need for clean firm power will surge in concert with the growth of electric vehicles as the state moves to phase out gasoline-fueled cars by 2035.
  • Industry in California is a larger source of emissions than the power sector today, and it has few options available to reduce CO2 apart from CCS. Cement production, for example, requires high temperatures, but only 40 percent of its emissions are from combustion; a larger fraction is process related.
  • A federal tax credit known as 45Q offers $22 per ton of CO2 that is captured and used for enhanced oil recovery or other end uses, increasing to $35 in 2026 and adjusted for inflation thereafter. The credit is $34 per ton, increasing to $50, for CO2 that is captured and injected to geologic storage.
  • The research found that ethanol plants, hydrogen producers, and refineries in the state could capture and store CO2 profitably with existing incentives.

Path to 100% Perspective:

The record breaking heat wave that swept across the western part of the country and caused a series of blackouts in the Golden State this summer, offered additional modelling opportunities to demonstrate the most effective mix of energy to accommodate any extreme weather situation and meet clean power mandates. The big challenge facing California and the rest of the world is how to integrate renewables into the grid while building security of supply and a sustainable power system with an affordable plan for everyone involved. The “Optimal Path“ includes using power-to-gas (PtG) along with existing and future renewable energy.


Photo by Tyler Casey on Unsplash

Pathways Toward 100% Carbon Reduction for Electric Utility Power Systems

Many states, cities, towns and utilities are committing to a 100% clean energy future. This push toward 100% is ubiquitous in the news, academia and politics. However, there is no clear or commonly accepted understanding of what this means. For example, what is the difference between 100% carbon-free and 100% carbon-neutral?

A recent Wärtsilä whitepaper, “Pathways Toward 100% Carbon Reduction for Electric Utility Power Systems,” breaks down these terms and examines the costs and carbon reduction trajectories associated with these 100% targets. It explores what these different definitions imply for utility systems as they transition from fossil-dominated to clean energy dominated.

The findings of the whitepaper point toward utilities leveraging power-to-gas (PtG) technologies to meet net-zero carbon emission goals, rather than 100 percent carbon-free. In examining the cost of a carbon-free system versus a carbon-neutral system, the analysis concludes that electric utilities can achieve 80 percent carbon reduction based purely on economics, with no subsidies, mandates or renewable requirements by leveraging PtG.

Carbon free may be the ideal solution for utilities that have ready access to hydro or other carbon free resources that can provide firm capacity when wind and solar falter. But most utilities do not fall in this camp and must explore a wider array of technical solutions to meet decarbonization goals. PtG provides an additional degree-of-freedom in the planning process that unlocks new and exciting pathways towards decarbonization. This work shows PtG pathways provide the lowest cost for ratepayers while simultaneously attending to climate change concerns.

The United States can lead in the path to a 100 percent renewable future by investing in PtG to provide a cornerstone of the path towards what the Intergovernmental Panel on Climate Change (IPCC) is calling for: carbon-neutrality. In general, PtG will be a large part of decarbonization for flights, sea-freight and domestic shipping and automotive, supplementing the strides we are making with electric vehicles. The investment in power-to-fuels is already starting and will accelerate.

This will provide positive feedback loops and interplay among the liquid fuels industry, the natural gas fuel industry, and the electric utility industry that will be beneficial for all three in meeting decarbonization targets. What may still be needed, is the legislative and regulatory vision to make this possible, or at the least, not stifle it.

For example, many states openly allow biofuels to count as “renewable” for power generation. Allowing the same for renewably generated power-to-gas would provide a great deal of incentive in the adoption of this technology and hopefully accelerate a 100% renewable future.