$15 trillion global hydrogen investment needed to 2050-research

At-a-Glance:

Decarbonizing energy and other industries globally using hydrogen will require investment of almost $15 trillion between now and 2050, the Energy Transitions Commission (ETC) said in a report in April. The ETC is an international coalition of executives from the energy industry committed to achieving net zero emissions by mid-century, a goal set by the Paris climate agreement. To learn more, read $15 trillion global hydrogen investment needed to 2050-research.”

Key Takeaways:

  • Hydrogen use is forecast to grow to 500-800 million tons a year by mid-century, accounting for 15-20% of total final energy demand, from 115 million tons currently.
  • Producing green hydrogen will need zero-carbon electricity supply to increase by 30,000 terawatt hours (TWh) by 2050, on top of 90,000 TWh needed for decarbonization generally, the ETC said.
  • Around 85% of the required investment would be in electricity generation and 15% in electrolysers, hydrogen production facilities and transport and storage infrastructure.
  • Large-scale geological storage will be needed for the hydrogen produced, given the limited capacity and large costs of compressed hydrogen containers. Salt caverns will offer the lowest cost but if 5% of total annual hydrogen use in 2050 needs to be stored, it needs about 4,000 typical size salt caverns, compared with only about 100 in use for natural gas today, the report said.

Path to 100% Perspective:

As coal, diesel and legacy natural gas plants are retired to achieve ambitious decarbonization goals, the need for new dispatchable capacity is necessary for reliability and resiliency in future power systems. Short-duration and long-duration energy storage are both necessary in future power systems and they each have different roles. Long-duration storage has been the missing piece of the decarbonization puzzle, however, the use of battery storage in this application is not economical or viable.

The most economical long-duration storage is formed with green hydrogen-based future fuels, such as hydrogen, ammonia, carbon neutral methanol and methane.These fuels can be used to generate electricity in flexible power plants. Such flexible power plants provide carbon neutral firm, dispatchable capacity to the grid at any time.

 

Photo by Julian Hochgesang on Unsplash

California duck curve “alive and well” as renewable, minimum net load records set

At-a-Glance:

High wind and solar production combined with low demand led the California Independent System Operator (CAISO) to reach a new record of 92.5% of load served by renewables and 98.1% of load served by carbon-free resources,CAISO reported. To learn more, read “California duck curve ‘alive and well’ as renewable, minimum net load records set.”

Key Takeaways:

  • The records were set on March 13. That same day,  CAISO established a new minimum net load, which is load minus wind and solar generation, 3.614 GW.
  • Wind generation averaged 22% of the total fuel mix on March 13, the highest daily average on record, according to CAISO data. That jump in wind generation drove wind and solar generation to a combined daily average of 39.2% of the mix, more than double the three-year average.
  • CAISO has made significant progress in working with the battery storage community to support system reliability during stressed operating conditions by establishing a minimum state of charge requirement that will be applied when day-ahead markets indicate the potential for insufficiency.
  • CAISO is also initiating longer-term market design work with storage providers to develop enhancements that will support system reliability while more effectively addressing the commercial and asset optimization needs of a diverse fleet of storage resources.

Path to 100% Perspective:

California has made impressive gains in its integration of renewables into the power supply mix. While these numbers are worth celebrating, there is much more work to do if the state is going to meet its 100% clean energy target by 2045. It is possible, and the Optimal Plan provides the

lowest transition costs by including flexible thermal generation. The flexible thermal generation assets can be converted as needed to use carbon-neutral fuels produced with excess solar and wind energy through Power-to-X, forming a large, distributed, long-term energy storage system.

 

Photo by Paul Tune on Unsplash

An $11 trillion global hydrogen energy boom is coming. Here’s what could trigger it

At-a-Glance:

Storing fuel in salt caverns isn’t new, but hydrogen’s growing role in decarbonization has revitalized interest in the concept. The Advanced Clean Energy Storage project in Utah aims to build the world’s largest storage facility for 1,000 megawatts of clean power, partly by putting hydrogen into underground salt caverns. The concept is quickly gaining momentum in Europe. To learn more, read An $11 trillion global hydrogen energy boom is coming. Here’s what could trigger it.

Key Takeaways:

  • With the cost of renewables such as solar power falling, green hydrogen is being touted as one part of the energy mix that will lead toward decarbonization, with applications ranging from consumer and industrial power supplies to transportation and spaceflight.
  • By 2050, U.S. demand for hydrogen could increase anywhere from 22 million to 41 million metric tons per year, up from 10 million today, according to a study released this month by the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL).
  • Bank of America believes hydrogen technology will generate $2.5 trillion in direct revenue — or $4 trillion if revenue from associated products such as fuel cell vehicles is counted — with the total market potential reaching $11 trillion by 2050.

Path to 100% Perspective:

Hydrogen has a high potential of becoming the fuel of the future, helping societies move towards decarbonization. Because hydrogen was not used as a power generation fuel in the past, the technologies to combust and use it in different applications need to be developed. Hydrogen burns with air to produce water, without any carbon emissions. It is perfect for use in 100% clean energy portfolios.

 

Photo by Micheile Henderson on Unsplash