California Energy Officials Trying to Avoid Summer Blackouts

At-a-Glance:

State agencies and electric utilities are scrambling to shore up power supplies in hopes of avoiding the rolling blackouts that left 800,000 California homes and businesses without power during a record-breaking heat wave last August. To learn more, read California Energy Officials Trying to Avoid Summer Blackouts.”

Key Takeaways:

  • Gas-fired power plants could be called on more, instead of less. State regulators extended the life of outdated gas-fired power generators in Huntington Beach, Long Beach, Redondo Beach, and Oxnard, all scheduled to shutdown at the end of 2020.
  • The state’s “Final Root Cause Analysis” found the rolling blackouts on Aug. 14 and 15 resulted from a combination of increased demand, inadequate supplies, a now-fixed software glitch, the export of power to out-of-state utilities, gas-fired plants unable to run at full capacity and out-of-state suppliers with no energy left to sell to California.
  • Considering long-term needs, the state Public Utilities Commission has called for 8,000 megawatts of new clean energy over the next four years – including 2,000 megawatts by this summer.

Path to 100% Perspective:

The current plan in California is to use more gas fire plants, but by adding flexible generation to the mix, California could follow the Optimal Path and reduce the need for battery storage to 158 GWh. This would help the state avoid overbuilding its renewable generation and battery storage infrastructure and cut solar and wind capacity requirements by 8 GW compared to renewables plus battery storage alone. California already has the natural gas infrastructure in place to follow the Optimal Path. The state’s existing gas storage capacity and distribution systems can easily provide the necessary 8 TWh of reliable, fully dispatchable renewable energy while using only 15 percent of existing underground gas storage capacity. This alleviates concerns around “stranded assets” since flexible generation plants can shift at any time to burn synthetic methane, even before 2045.

 

Photo by Andrey Metelev on Unsplash

Ditch Nuclear And Save $860 Million With Grid Flexibility, U.K. Told 

At-a-Glance

According to the report from Finnish energy tech firm Wärtsilä, the U.K. would stand to save $860 million per year if, instead of new nuclear power, the government backed grid flexibility measures, such as battery storage and thermal generation. That equates to a saving of about $33 dollars per British household per year. Crucially, the analysis revealed that even if energy generation was to remain the same as it is today, Britain could increase renewables’ share of that generation to 62% simply by adding more flexibility. To learn more, read Ditch Nuclear And Save $860 Million With Grid Flexibility, U.K. Told.” Reading this article could require a subscription.

Key Takeaways

  • According to the Wärtsilä report, Germany at one point paid almost $1.1 million per hour to export 10.5 gigawatts of electricity. Such inefficiencies, Ville Rimali, growth and development director at Wärtsilä Energy said, were indicative of inflexible electricity systems—while countries that had built flexibility into their power grids had no such issues.
  • On the other hand, investing in nuclear power could, according to Wärtsilä, entrench an inflexible grid while making renewables such as solar and wind less cost-effective.
  • Wärtsilä’s recommendations appear to align closely with those of the International Energy Agency (IEA), which has stated that, as economies move away from fossil fuels, “power system flexibility has become a global priority.” Subsequently, according to a report released by the agency last month, much faster deployment of grid flexibility will be required if countries are to achieve their decarbonization targets.

Path to 100% Perspective

In the “Optimising the UK’s Shift to a Renewable-Powered Economy, Wärtsilä recommends a three phase strategy to accelerate a cost-optimal shift to 100% renewable energy and economic decarbonisation. 

  1. Support faster renewable energy deployment to achieve 80% renewable generation by 2030. 
  2. Increase investment in flexibility to unlock renewable energy and deliver a cost-optimal transition for consumers. 
  3. Future-proof today’s decisions to enable future technologies – such as Power-to-X – to achieve 100% renewable energy before 2050

 

Photo by Nicolas Hippert on Unsplash