The grid’s big looming problem: Getting power to where it’s needed


In the punishing heat wave that struck the Pacific Northwest, about 17,000 electricity customers were without power in Washington state in June. Nearly 20,000 more were enduring blackouts in Idaho, Oregon, California and Nevada. Those aren’t devastating numbers, but they are a reminder that the electrical grid in America is frayed and always operating close to the edge. To learn more, read “The grid’s big looming problem: Getting power to where it’s needed.” Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • A central issue is chronic congestion on transmission lines that bring power from where it’s made to where it’s wanted.
  • In Texas, ERCOT says congestion costs the state about $1 billion a year. In northern Vermont, officials have put a moratorium on new solar and wind projects, because the transmission lines can’t carry any more electricity.
  • A consequence of congestion is that wind and solar equipment is sometimes unable to operate because there is no room on the lines to carry their electricity. For example, in New York state last year, 62 gigawatt-hours of wind power was curtailed.
  • A larger problem is that wind, solar, and other projects can wait years before they get the green light to connect to transmission lines. Currently, the waiting list includes proposed renewable power plants capable of turning out 680 gigawatts.
  • Up to now, much of the country has pursued a market-based approach, with different companies producing, transmitting and distributing power.

Path to 100% Perspective:

Addressing grid capacity will be essential to realizing a 100% zero emission electricity system by 2035. To accommodate the significant amount of renewables to be installed, flexibility in the form of energy storage and carbon neutral flexible gas power plants will be key to balancing the grid. The U.S. will need 410 GW of new battery energy storage by 2035, combined with 116 GW of new flexible gas-fired power capacity operating on renewable bio or synthetic carbon neutral fuels.


Photo by Casey Horner on Unsplash