Xcel cuts carbon emissions 50% by 2021, eyes Colorado transmission, coal plants to reach 2030 goal

At-a-Glance:

Xcel Energy estimates that it has reduced carbon emissions 50% below 2005 levels in 2020, and is on track to meet its 2030 target of reducing carbon emissions 80% in the next decade, based on its upcoming integrated resource plans (IRPs). To learn more, read “Xcel cuts carbon emissions 50% by 2021, eyes Colorado transmission, coal plants to reach 2030 goal.”

 Key Takeaways:

  • Xcel completed six wind projects in 2020, representing nearly 1,500 MW of capacity. Another 800 MW of wind projects are under construction and expected to become operational in 2021.
  • Xcel plans to file solar plans with Minnesota regulators later this year, which would have the utility develop 460 MW of solar near its Sherco coal plant – retiring in 2030 – to take advantage of existing transmission near the plant.
  • Although specifics are not available regarding Xcel’s upcoming Colorado IRP, the plan will include transmission expansion to bring additional load from remote-located renewables into the Denver area.
  • Xcel will also propose a plan for its remaining Colorado coal plants, as well as adding more renewables, to put the utility on track to reduce its carbon footprint 80% by 2030.
  • Xcel plans to exit coal entirely in Minnesota by 2030.
  • Xcel executives will continue to be bullish on electric vehicle infrastructure build outs, investing $500 million in charging stations and distribution system infrastructure over the next five years, and closer to $1.5 – 2 billion over the next decade.

Path to 100% Perspective:

Xcel is paving the path to 100% for those in the energy sector, setting and meeting ambitious carbon reduction goals and building out its renewable energy capacity. Leveraging existing infrastructure while making key investments in solar and wind will help ease the transition to 100% carbon-free energy and serve as an example to others looking to do the same.

 

 

Photo by natsuki on Unsplash

Hydrogen advocates look to capitalize on California’s goal to replace diesel for back-up generation

At-a-Glance:

California regulators are on the lookout for cleaner alternatives to replace the widespread use of back-up diesel generation – particularly among data centers in Silicon Valley and other areas of the state – and some industry players think hydrogen could be the answer. To learn more, read “Hydrogen advocates look to capitalize on California’s goal to replace diesel for back-up generation.”

Key Takeaways:

  • Hydrogen fuel cells are advantageous for several reasons: they occupy less space than batteries, possess long-term storage capability, are quiet, reliable, and 100% zero-emission.
  • The key draw of hydrogen is its cost effectiveness at longer durations.
    • For a completely resilient, 100% renewable data center with zero emissions, using hydrogen would translate to a levelized cost of electricity amounting to $119 per MWh.
    • Batteries would lead to over $4,000 per MWh levelized cost to ensure 48 hours of backup power.
  • Taking a step back from the issue of replacing diesel back-up generators, environmental advocates are urging the state to prioritize the adoption of renewable, zero emissions technologies.
  • Ben Schwartz, policy manager at Clean Coalition, said California could adopt policies to promote the efficiency of solar and storage alternatives to diesel generation.

Path to 100% Perspective:

Renewable fuels, such as hydrogen, can help utilities overcome the variability challenges posed by seasonal conditions and extreme weather. One approach that can be leveraged in the transition to a 100% renewable energy system is power-to-gas (PtG). PtG technology uses excess energy from wind and solar to produce synthetic hydrogen and methane. The combination of stored fuel potential and thermal capacity yields a long-term energy storage system that acts like a gigantic distributed “battery.” Coupled with traditional, shorter-term storage technologies, this system can help meet seasonal energy demands when renewables are variable, and provide a reliable and secure supply of electricity during periods of extreme weather.

 

Photo by Clayton Cardinalli on Unsplash

California’s pathway to 100% clean electricity begins to take shape, but reliability concerns persist

At-a-Glance

California’s energy agencies are taking a first stab at assessing possible pathways to the state’s ambitious goal of achieving 100% renewable and zero-carbon electricity by 2045, but concerns about system reliability — especially in light of the rolling blackouts — continue to plague regulators. The California Public Utilities Commission (CPUC), California Energy Commission (CEC) and California Air Resources Board (CARB) released a draft report on getting to a 2045 clean electricity portfolio, which indicated the goal is technically achievable. To learn more, read “California’s pathway to 100% clean electricity begins to take shape, but reliability concerns persist.”

Key Takeaways

  • The report presents important initial insights into potential paths for the electric sector, Mary Nichols, CARB chair, said at the workshop, adding that “the initial work highlights the enormous challenge ahead, requiring a complete transformation in the type of electricity that Californians consume.”
  • California’s carbon goals are part of legislation passed by the state in 2018, called Senate Bill 100, which calls for 100% of electric retail sales in the state to come from renewable energy and zero-carbon resources by the end of 2045.
  • The bill also required the three energy agencies to create a report evaluating the policy and follow it up with updates at least every four years. The agencies intend to submit a final version of the initial report early next year.
  • Based on this analysis, the report concludes that achieving the 100% clean electricity goal is technically achievable, and could cost around 6% more than the baseline 60% Renewable Portfolio Standard (RPS) future by 2045, although that could change if renewables continue to decline in cost at a faster rate than anticipated by the models.

Path to 100% Perspective

A place where the transition to renewables has progressed quite far already is California. The lessons learned along the way have been plentiful, but powerful nonetheless. The record-breaking heat wave that swept across the western part of the country and caused a series of blackouts in the Golden State, offered additional modelling opportunities to demonstrate the most effective mix of energy to accommodate any extreme weather situation during the transition, and to meet clean power mandates. The big challenge facing California and the rest of the world is how to integrate renewables into the grid while building security of supply and a sustainable power system with an affordable plan for everyone involved.

 

 

Photo by Matthew Hamilton on Unsplash