How to Build a Green Hydrogen Economy for the US West

At-a-Glance:

Out in Utah, a coal-fired power plant supplying electricity to Los Angeles is being outfitted to eventually be able to run on hydrogen, created via electrolysis with wind and solar power and stored in massive underground caverns for use when that clean energy isn’t available for the grid. This billion-dollar-plus project could eventually expand to more renewable-powered electrolyzers, storage and generators to supply dispatchable power for the greater Western U.S. grid. It could also grow to include hydrogen pipelines to augment and replace the natural gas used for heating and industry or supply hydrogen fuel-cell vehicle fleets across the region. To learn more, read “How to Build a Green Hydrogen Economy for the US West.”

Key Takeaways:

  • The Western Green Hydrogen Initiative (WGHI) is a group representing 11 Western states, two Canadian provinces and key green hydrogen industry partners. WGHI launched in November to align state and federal efforts to create a regional green hydrogen strategy including a large-scale, long-duration renewable energy storage regional reserve.
  • At the heart of this effort are two projects in central Utah. The first is the Intermountain Power Project, a coal-fired power plant operated by the state-owned Intermountain Power Agency, which supplies municipal utilities in Utah and California, including the Los Angeles Department of Water and Power. By 2025, Intermountain will be converted to turbines to supply 840 megawatts of power using natural gas blended with 30 percent hydrogen, a proportion that will rise to 100 percent hydrogen over the coming decades.
  • The second project is the Advanced Clean Energy Storage (ACES) project, which will invest roughly $1 billion to develop a nearby underground salt dome to store compressed hydrogen. ACES will provide up to 150,000 megawatt-hours of energy storage capacity, a scale that dwarfs the lithium-ion battery capacity being installed in California and across the Intermountain West.

Path to 100% Perspective:

Whether green hydrogen can cost-effectively replace natural gas for its myriad current uses will depend largely on the carbon-reduction drivers involved. But it will also require a redefinition of what it’s doing for the broader electrical system, said Jussi Heikkinen, Director of Growth and Development for the Americas division of Wärtsilä Energy Business. Wärtsilä’s engines power about one-third of the world’s cargo ships and a good deal of electricity generation, he said. It’s been making strides in converting its engines to run on 100 percent hydrogen and is developing hydrogen generation projects in the U.S. and Europe. In a study focused on California, Wärtsilä showed that zero-carbon hydrogen, or methane generated with carbon-capture technologies, to fuel power plants is a much less expensive alternative to building the battery capacity needed to cover the final 5 percent to 10 percent of grid power needed to reach its 100 percent carbon-free energy goals. “When there are huge load peaks, cloud cover or unusual weather, these plants kick in, and allow you to build a much smaller battery storage fleet,” he said.

 

Photo by Peter De Lucia on Unsplash

Missing Pieces of Decarbonization Puzzle Realized

Jussi Heikkinen, Director of Growth & Development, Americas
Wärtsilä Energy Business

These are exciting times as the renewable energy future is a focus for so many organizations and governments around the world, as indicated by attendance of the Wärtsilä sponsored webcast hosted by GreenBiz on November 19, 2020, Missing Pieces of Decarbonization Puzzle Realized. Emerging technologies are moving closer to reality, which makes ambitious energy goals more realistic and the path to 100 percent renewable energy is now within reach.

A place where the transition to renewables has progressed quite far already is California. The lessons learned along the way have been plentiful, but powerful nonetheless. The record-breaking heat wave that swept across the western part of the country and caused a series of blackouts in the Golden State, offered additional modelling opportunities to demonstrate the most effective mix of energy to accommodate any extreme weather situation during the transition, and to meet clean power mandates.

The big challenge facing California and the rest of the world is how to integrate renewables into the grid while building security of supply and a sustainable power system with an affordable plan for everyone involved.

That’s why Wärtsilä launched its Path to 100% initiative. We believe a 100% renewable energy future is possible, practical and financially viable so we assembled a community of experts to produce solutions based on science and engineering. This fall, we published a white paper that describes the Optimal Path to decarbonization for California using new hourly load data provided by this summer’s extreme heatwave.

In the whitepaper, Path to 100% Renewables for California, we modelled an approach for  California to reach its climate and clean power goals faster, at a lower cost to ratepayers, all while maintaining system reliability.

The “Optimal Path“ includes renewable carbon neutral fuels – hydrogen and synthetic methane. Curtailed renewable electricity is used in the process with water to produce hydrogen, and carbon is captured from air to produce synthetic methane with hydrogen. These fuels are used in power plants to provide a long term energy storage for seasonal and weather management needs. In the Optimal Path scenario, Renewable Portfolio Standard (RPS) commitments would actually be reached by 2040, five years ahead of schedule.

Generation costs in the “Optimal Path” scenarios are between 50 and 54 dollars per megawatt hour in 2045, while these costs would be almost 3 times higher if California opted to use only solar, wind and storage to build the power system. This cost difference is excessive and not beneficial for industries or households to pay. Additionally, carbon emissions are at net zero in 2045 in both scenarios.

How can California get on the Optimal Path to a renewable energy future? One recommendation is to recognize carbon neutral fuels – as presented above – to be counted as renewable for RPS purposes. This would enable the utilities to start looking for ways to invest and use such fuels to the benefit of California.

Another state aggressively pursuing renewable energy goals is Texas. Co-presenter and Electric Reliability Council of Texas (ERCOT) Principal of Market Design and Development, Kenneth Ragsdale shared the Lone Star State’s progress on integrating renewables into the power system.

Climate Imperative’s Executive Director, Bruce Nilles offered a big picture perspective on electricity generation capacity and the commitments needed to accelerate decarbonization.

To watch the recorded presentations from Wärtsilä, ERCOT as well as Climate Imperative and download presentation materials, register today for the Missing Pieces of Decarbonization Puzzle Realized webcast.