How Wind and Solar Power Got the Best of the Pandemic AND Wind, Solar Power Made Strong Gains in 2020, IEA Says

At-a-Glance:

Global recessions, wars, and pandemics have a way of driving down energy demand. Last year, the International Energy Agency (IEA) said the collapse in global primary energy demand brought on by COVID-19 was the biggest drop since the end of World War II, itself the biggest drop since the influenza pandemic after World War I. IEA also reported that renewable power capacity grew at its fastest pace this century in 2020, raising its growth forecast for wind and solar power for this year and next.According to the Paris-based energy watchdog, renewables were the only energy source for which demand increased last year. The addition to the world’s renewable electricity capacity last year was 45% more than in the prior year and the biggest jump since 1999, as wind and solar farms sprang up across the world’s major economies. To learn more, read How Wind and Solar Power Got the Best of the Pandemic AND Wind, Solar Power Made Strong Gains in 2020, IEA Says.” Reading these articles may require a subscription from the news outlets.

Key Takeaways:

  • Renewable energy installations not only increased during the pandemic, they exceeded even the most bullish of expectations, with wind installations increasing 90% and solar increasing 23%.
  • IEA estimates that in 2022, renewables will account for 90% of new power capacity expansion globally.
  • ​​“Wind and solar power are giving us more reasons to be optimistic about our climate goals as they break record after record,” said IEA Executive Director Fatih Birol, adding that greater use of lower-carbon electricity was needed for the world to achieve its carbon-reduction goals.
  • The European Union plans to spend $1 trillion to reach its goal of net carbon neutrality by 2050.

Path to 100% Perspective:

U.S. renewable energy adoption continues to rise, in 2019, renewable energy sources accounted for 17.5% of total utility-scale electricity generation, with renewable energy generation reaching 720 TWh. More than 70% of energy stimulus funding is currently allocated to legacy fossil fuels, compared to less than 30% to clean energy. However, reallocating $72 billion in energy stimulus funding could achieve:

  • 107 GW of new renewable energy capacity
  • 6.5 % rise in share of renewable electricity generation (from 17.5% to 24% renewable electricity).
  • 544,000 new jobs in renewable energy, 175% more jobs than if the same stimulus was used to revive the legacy energy sector.

Tucson Electric turns on its biggest renewable-energy plants to date

At-a-Glance:

The electricity powering most of Tucson, including the University of Arizona, got a little cleaner the week of May 3, as Tucson Electric Power Company (TEP) switched on its biggest solar and wind power plants to date. To learn more, read “Tucson Electric turns on its biggest renewable-energy plants to date.” Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • The 1,130 acre project, built and owned by NextEra Energy, includes 30MW of linked battery storage to bank solar power for use when the sun goes down.
    • The Wilmot Energy Center is expected to generate enough energy to power the equivalent of 26,000 typical TEP homes.
  • TEP’s biggest renewable energy resource, the 250MW Oso Grande Wind Project in New Mexico, went online a couple of weeks later. Consisting of 62 wind turbines on 24,000 acres, Oso Grande is expected to generate enough energy each year to serve about 90,000 homes.
  • With Wilmot and Oso Grande online, TEP will have 628MW of large, community-scale wind and solar resources – with the 99MW Borderlands Wind Project, being built 100 miles south of Gallup, New Mexico, coming online by the end of 2021.
  • The new solar and wind farms will help TEP toward its goal of generating 70% of its power from renewables and cutting its carbon emissions by 80% by 2035.
  • TEP has dedicated a portion of its output to provide the UA campus with “100% clean energy” under a 20-year, green energy agreement announced in 2019.

Path to 100% Perspective:

Electric utilities such as TEP are embracing their role in reducing climate emissions by shifting to renewable energy sources, like solar and wind. As a growing number of cities, states, and nations set goals for increasing amounts of renewable energy, economics is helping bring those plans to fruition. Over the past 20 years, the cost per kilowatt of wind power plants has decreased by 40%, while the cost of solar generation has dropped by 90%. The cost-competitiveness of renewables is making it possible to accelerate decarbonization of power systems such as TEP.

NextEra Aims to Buy More U.S. Power Lines to Fuel Renewable Push

At-a-Glance:

NextEra Energy Inc. wants to buy more power lines to tap into rising demand for renewable energy, weeks after closing a $660-million deal for such transmission wires. The Florida-based company plans to expand its business both by developing and acquiring transmission assets. In March, NextEra bought GridLiance, which owns about 700 miles of high-voltage transmission lines, for about $660 million from Blackstone Group Inc. To learn more, read “NextEra Aims to Buy More U.S. Power Lines to Fuel Renewable Push.”  Reading this article may require a subscription from the news outlet.

Key Takeaways:

  • Corporate executives are encouraged by President Joe Biden’s focus on renewables, which is in turn encouraging more companies to expand their investment in renewables.
  • NextEra plans to add up to 30,000 megawatts of wind, solar and battery storage by 2024.
  • The country will need to expand its transmission grids by as much as 60% for wind and solar to make up half of U.S. electricity capacity by 2030 to meet the President’s goal of a fully green U.S. power grid by 2035.

Path to 100% Perspective:

Carbon neutral and carbon free systems must install enough capacity (with the right capabilities) to meet energy needs in worst-case scenarios. At a minimum, to assure reliability and avoid blackouts, utility system planners and policy makers need to account for seasonal trends in availability of renewable resources. Meanwhile, inflexible power systems cannot keep up with wind and solar’s variability, so power plants have to stay online and burn fuel even on sunny or windy days when they are not needed. In practice, this limits power systems to using perhaps 30% renewable generation. Any more than that gets curtailed. Therefore, additional investment in more transmission is required to meet the growing demand.

 

The Texas Polar Vortex Resurrects the Decarbonized Grid’s Fuel Diversity Question

At-a-Glance:

This article is not about which generating technologies caused the blackouts experienced in Texas and states across the Midwest this week. However, these events can get us thinking about where the industry goes from here. First, the U.S. natural-gas supply network was stressed by record demand and prices. The record-high gas demand would have been even higher without the rolling blackouts that were imposed because more homes with central heat would have run either gas-fired heaters or electric heat pumps, which would have been powered mostly by coal- or gas-fired generators if those weren’t impacted by outages. To learn more, read The Texas Polar Vortex Resurrects the Decarbonized Grid’s Fuel Diversity Question.”

Key Takeaways:

  • The nine days between February 9 – 17 seem to highlight a fuel-diversity dilemma for U.S. decarbonization targets and policies. Coal and natural gas comprised 65% of the power generation mix, 30% and 35% respectively, while utility-scale wind and solar only provided 6%.
    • Many utility integrated resource plans seek to quickly replace coal plants with new, or existing but underutilized, natural-gas plants as “bridge fuel,” while adding large amounts of wind and solar over the next five to 20 years.
  • An increase in natural-gas usage during a repeat polar vortex event would likely lead to more grid reliability problems. There are two options to prevent this:
    • Expand U.S. natural gas supply/network to support even higher send-out for an extended cold snap.
    • Build enough renewable energy sources to offset the loss of coal generation and prevent increased natural gas demand during an extended cold snap.
  • Wood Mackenzie’s latest Long-Term Outlook forecasts the U.S. adding over 1,300 GW of new combined wind and solar capacity by 2050 to reach 85% decarbonization, plus over 400 GW of battery storage.
    • The system would still require some backup natural-gas generation for periods of low renewable energy output.

Path to 100% Perspective:

Power systems won’t decarbonize overnight. The pathway toward a 100% renewable power system will be a phased transformation, leveraging different mixes of technologies and fuels at different steps along the path. Power-to-gas technology is one approach that can ease the transition from fossil fuels to renewables, while providing a long-term energy storage solution that ensures a reliable and secure supply of electricity during periods of extreme weather.

 

Photo Jerry Wang on Unsplash

Cal-ISO renewable capacity climbs, storage resources coming onto system

At-a-Glance

The California Independent System Operator added 2.1 GW of capacity to its grid in 2020 with another 3.3 GW permitted with online dates in 2020 or 2021 as the state works to achieve its ambitious 100% clean energy mandate over the next 25 years. To learn more, read Cal-ISO renewable capacity climbs, storage resources coming onto system.”

Key Takeaways

  • In 2020, Cal-ISO had 2.1 GW of capacity added through September of which 1.3 GW was gas-fired, according to U.S. Energy Information Administration (EIA) data.
  • EIA also shows 3.3 GW permitted with an online date in either 2020 or 2021. About 2,500 MW of this is under construction which includes 1.5 GW solar, 800 MW battery and 200 MW wind.
  • Cal-ISO president and CEO Elliot Mainzer has said the grid operator is working to improve its resource adequacy system following the rotating outages in August.
  • “Longer term, we’re working very closely with the [Public Utilities Commission], the Energy Commission and others in the regulatory space to try to make sure the resource adequacy paradigm in California is modernized sufficiently to recognize the changing resource mix,” Mainzer said. “There’s a lot of additional solar and batteries and wind and other renewables coming onto the system.”
  • Renewable generation curtailments in 2020 were up 220% year on year, according to ISO data.

Path to 100% Perspective

No power system can achieve 100% renewable electricity just by adding more renewable generation. It also needs to slash fossil-fueled generation. That means reducing reliance on traditional gas- and coal-fired plants, whether they’re used for baseload or to back up variable renewable generation. And that can be harder than you might think. The challenge is that traditional fossil-fuel-powered plants are inflexible: they can’t just switch off when the sun is high and switch back on when the sun sets. Because traditional power stations require many hours to shut down and many hours to start back up, they cannot power up and down quickly enough to handle predictable shifts in demand and generation, let alone unexpected changes in the weather. To ensure a steady flow of electricity, California’s traditional gas-fired power stations have to keep running at 40% to 50% capacity, even on a bright, sunny day. Running at low capacity is inefficient and emits large amounts of climate-warming carbon.

 

Photo by Jarosław Kwoczała on Unsplash

The New Green Energy Giants Challenging Exxon and BP

At-a-Glance

A decade ago, NextEra, Iberdrola and Enel were sleepy regional utilities with little name recognition. Now they are fast-growing giants with market values rivaling the likes of oil majors Exxon Mobil Corp. and BP PLC, thanks to their early all-in bets on wind and solar farms. Their early lead in the global transition away from oil has put these companies on track to become the major energy companies of the coming decades—the “green energy majors.” But they now face the threat of increased competition as some of the oil titans that have traditionally dominated the energy industry diversify into wind and solar power. To learn more, read “The New Green Energy Giants Challenging Exxon and BP.” Reading this article could require a subscription.

Key Takeaways

  • NextEra, Enel SpA and Iberdrola SA are Wall Street darlings, after Spain’s Iberdrola and Italy’s Enel became global builders of green energy projects, while NextEra became America’s largest generator of wind and solar power.
  • Enel and Iberdrola have outlined plans to substantially expand their portfolios of renewable-energy projects over the next decade with about $170 billion in collective investments.
  • Florida-based NextEra grew into America’s largest renewable energy producer by keeping debt levels low, capitalizing on federal tax subsidies available to help finance wind and solar projects around the country and reinvesting its profits to expand further. NextEra expects to have invested $60 billion in renewable energy projects between 2019 and 2022.
  • Denmark’s Ørsted A/S, a company formerly known as DONG Energy that focused on oil and gas, has transitioned into a leading player in offshore wind projects.

Path to 100% Perspective

As NextEra became more valuable than Exxon in 2020, it became increasingly clear that the status quo in energy is now in the rearview mirror and the path to 100% is nearly paved. Oil companies are not holding on to the past or unrealistic expectations for the future of energy. Instead, they are joining the race to renewables using their name recognition, influence in the energy sector and budgets to spur more competition to the benefit of those striving for a renewable energy future.

 

Photo by Efe Kurnaz on Unsplash

California’s pathway to 100% clean electricity begins to take shape, but reliability concerns persist

At-a-Glance

California’s energy agencies are taking a first stab at assessing possible pathways to the state’s ambitious goal of achieving 100% renewable and zero-carbon electricity by 2045, but concerns about system reliability — especially in light of the rolling blackouts — continue to plague regulators. The California Public Utilities Commission (CPUC), California Energy Commission (CEC) and California Air Resources Board (CARB) released a draft report on getting to a 2045 clean electricity portfolio, which indicated the goal is technically achievable. To learn more, read “California’s pathway to 100% clean electricity begins to take shape, but reliability concerns persist.”

Key Takeaways

  • The report presents important initial insights into potential paths for the electric sector, Mary Nichols, CARB chair, said at the workshop, adding that “the initial work highlights the enormous challenge ahead, requiring a complete transformation in the type of electricity that Californians consume.”
  • California’s carbon goals are part of legislation passed by the state in 2018, called Senate Bill 100, which calls for 100% of electric retail sales in the state to come from renewable energy and zero-carbon resources by the end of 2045.
  • The bill also required the three energy agencies to create a report evaluating the policy and follow it up with updates at least every four years. The agencies intend to submit a final version of the initial report early next year.
  • Based on this analysis, the report concludes that achieving the 100% clean electricity goal is technically achievable, and could cost around 6% more than the baseline 60% Renewable Portfolio Standard (RPS) future by 2045, although that could change if renewables continue to decline in cost at a faster rate than anticipated by the models.

Path to 100% Perspective

A place where the transition to renewables has progressed quite far already is California. The lessons learned along the way have been plentiful, but powerful nonetheless. The record-breaking heat wave that swept across the western part of the country and caused a series of blackouts in the Golden State, offered additional modelling opportunities to demonstrate the most effective mix of energy to accommodate any extreme weather situation during the transition, and to meet clean power mandates. The big challenge facing California and the rest of the world is how to integrate renewables into the grid while building security of supply and a sustainable power system with an affordable plan for everyone involved.

 

 

Photo by Matthew Hamilton on Unsplash

Amazon Backs 26 Green Projects in Drive to Renewable Energy

At-a-Glance

Amazon.com Inc. made an announcement in December to say it was backing 26 new wind and solar utility projects around the globe, a massive investment that the company said made it the largest corporate buyer of renewable energy. The retail and technology company said the utility-scale projects, located in Australia, France, Germany, Italy, South Africa, Sweden, the U.K. and the U.S., would have the capacity to produce 3.4 gigawatts of electricity. To learn more, read “Amazon Backs 26 Green Projects in Drive to Renewable Energy.” Reading this article could require a subscription.

Key Takeaways

  • In 2019, Google was the largest corporate buyer of renewable energy and claimed the previous high water mark that year with a 1.6 gigawatt purchase in a single announcement.
  • “Amazon is helping fight climate change by moving quickly to power our businesses with renewable energy,” Amazon Chief Executive Officer Jeff Bezos said in a statement.
  • Amazon has said it aims to power its operations with renewable energy sources by 2025, five years ahead of an earlier target, and to become carbon neutral 15 years later.
  •  Including the new deals, Amazon has backed 127 wind and solar projects, with 6.5 gigawatts of capacity.

Path to 100% Perspective

Ambitious renewable energy goals make headlines every week, with some organizations competing for the title of energy leader. This form of competition is accelerating the path to decarbonization through strategic investments in emerging technologies and innovative ways to integrate renewable energy into business plans and power systems. As more organizations join forces to find solutions designed to decrease carbon emissions, the marketplace and utility sector are able to more easily visualize a renewable energy future on the horizon.

 

Photo by Bryan Angelo on Unsplash

Next Era’s Bet on Renewable Energy Was a Winner All Along

At-a-Glance

NextEra Energy Inc. started becoming a green giant in 2002. At the time wind was still a more expensive way to generate electricity than coal, but not drastically so. NextEra had no doubt seen the cost dropping quickly and figured it would keep the same trajectory in the future. In short order, it put a similar strategy into a batch of solar plants. To learn more, read “Next Era’s Bet on Renewable Energy Was a Winner All Along.” Reading this article could require a subscription. 

Key Takeaways

  • NextEra Energy was betting, essentially, on Wright’s Law, a theory of industrial production born, like the utility, in the 1920s. Wright was studying airplane makers and found that with each doubling of capacity, cost declined by a similar amount. Essentially: if you build it, you will save.
  • Not only did NextEra utilize Wright’s cost curve correctly, but it leveraged government subsidies – often at the state level – to build plants before they would be profitable on their own. 
  • NextEra’s wind and solar farms, now scattered across about half the U.S., produce enough power to energize Greece. The company has plans to nearly double its renewable capacity to be able to power 11 million homes, which is about 10 percent of the country. 

Path to 100% Perspective

Visionaries have a valuable skill set which allows them to study the past and present trends as well as “lessons learned” to develop strategies for the future. NextEra has proven to be a trailblazer for utilities in their deliberate and ambitious approach to transition to renewable energy. Their investments are aligned with their increasing goals, which is proving to serve as an example to organizations throughout the energy sector.

 

Photo by Jason Blackeye on Unsplash